Syzygy Plasmonics has raised $23 million thanks to international support. Photos via plasmonics.tech

A Houston startup founded based off research coming out of Rice University has closed its series B funding, the company announced this week.

Founded in 2017, Syzygy Plasmonics is a chemical company developing a photocatalyst-powered hydrogen fuel cell technology that produces a cheaper source of energy that releases fewer carbon emissions. As of this week, the company has $23 million more to fund its scaling and grow its team thanks to the closing of its series B financing led by Hong Kong-based Horizons Venture. Equinor Ventures, a new investor, also joined in on the round, along with previous seed and series A investors including The Engine, GOOSE Capital, and Evok Innovations.

"With renewable electricity as an energy source, our technology is cleaner, and because of the stability and activity of our photocatalysts, we can drive dozens of possibilities, tuning reactions that produce different chemicals," says Trevor Best, Syzygy Plasmonics' co-founder and CEO, in a news release. "Our initial product will focus on eliminating emissions from hydrogen production, transforming the industrial process involved in making semiconductors, LEDs and metals. Our system will also enable industries that are consumers of hydrogen fuel cells, like fuel cell vehicles."

The hydrogen-fueled technology originated out of research done over two decades by two Rice University professors, Naomi Halas and Peter Nordlander and further developed by the company's co-founder and CTO, Suman Khatiwada. The technology has the ability to both lower costs and emissions at industrial plants. According to the release, Syzygy's first product focused on hydrogen and the technology has the potential to cut the cost of zero emission hydrogen in half, when compared to other alternatives such as electrolysis.

"There are rules in chemical engineering, and you can't break them, but we follow them in a different way," CEO Trevor Best previously told InnovationMap. "What we're doing is fundamentally different. We're using light instead of heat to drive chemical reactions."

Currently, Syzygy employs 26 people and plans to double its workforce in the next year in order to launch its first full-size, commercial-ready chemical reactors in 2022.

In August of 2019, Syzygy raised its $5.8 million series A and secured Department of Energy ARPA-E and National Science Foundation SBIR Program grants.

"The keys to unlock the potential of hydrogen energy lie within production cost reduction and safety enhancements. Syzygy uses a photocatalysis process to produce H2 on premises, therefore mitigating risks of explosion imposed by the transportation of liquid hydrogen while lowering production costs to increase overall energy efficiency. This technology will be applicable to a wide-range of use-cases, enabling a faster path toward zero-emissions," says Patrick Poon of Horizons Ventures, who is also a new board member at Syzygy.

The international fundraise also attracted interest from Norway-based Equinor's venture arm, which has operations in more than 30 countries.

"We have announced our ambition to become a net-zero energy company by 2050 and in order for society at large to meet its climate goals it will require new solutions and technologies. We are pleased to announce the investment in Syzygy as one potential contributor to help the energy industry reduce emissions as part of our effort to shape the future of energy," says Gareth Burns, head of Equinor Ventures, in the release.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston university to launch artificial intelligence major, one of first in nation

BS in AI

Rice University announced this month that it plans to introduce a Bachelor of Science in AI in the fall 2025 semester.

The new degree program will be part of the university's department of computer science in the George R. Brown School of Engineering and Computing and is one of only a few like it in the country. It aims to focus on "responsible and interdisciplinary approaches to AI," according to a news release from the university.

“We are in a moment of rapid transformation driven by AI, and Rice is committed to preparing students not just to participate in that future but to shape it responsibly,” Amy Dittmar, the Howard R. Hughes Provost and executive vice president for academic affairs, said in the release. “This new major builds on our strengths in computing and education and is a vital part of our broader vision to lead in ethical AI and deliver real-world solutions across health, sustainability and resilient communities.”

John Greiner, an assistant teaching professor of computer science in Rice's online Master of Computer Science program, will serve as the new program's director. Vicente Ordóñez-Román, an associate professor of computer science, was also instrumental in developing and approving the new major.

Until now, Rice students could study AI through elective courses and an advanced degree. The new bachelor's degree program opens up deeper learning opportunities to undergrads by blending traditional engineering and math requirements with other courses on ethics and philosophy as they relate to AI.

“With the major, we’re really setting out a curriculum that makes sense as a whole,” Greiner said in the release. “We are not simply taking a collection of courses that have been created already and putting a new wrapper around them. We’re actually creating a brand new curriculum. Most of the required courses are brand new courses designed for this major.”

Students in the program will also benefit from resources through Rice’s growing AI ecosystem, like the Ken Kennedy Institute, which focuses on AI solutions and ethical AI. The university also opened its new AI-focused "innovation factory," Rice Nexus, earlier this year.

“We have been building expertise in artificial intelligence,” Ordóñez-Román added in the release. “There are people working here on natural language processing, information retrieval systems for machine learning, more theoretical machine learning, quantum machine learning. We have a lot of expertise in these areas, and I think we’re trying to leverage that strength we’re building.”

Houston biomanufacturing accelerator adds pilot plant to support scale-ups

new digs

Houston accelerator BioWell announced this month that it has taken over operations of Texas BioTechnology’s pilot plant in Richmond, Texas.

The 33,000-square-foot facility is one of the largest of its kind in the U.S. and features molecular biology labs, advanced automation, fermentation equipment and 16 dedicated benches for early-stage industrial biomanufacturing companies, according to a release from the company. It will allow BioWell to offer on-site education, workforce development, and lab training for students and workers.

BioWell and its founding company, First Bight Ventures, report that the facility should help address the industry's "scale-up bottleneck due to limited pilot- and demonstration-scale infrastructure" in the U.S.

"As a Houston-based accelerator dedicated exclusively to early-stage biomanufacturing startups, partnering with this facility was a natural and highly strategic decision for us. The site is fully operational and offers a strong platform to support biomanufacturing companies, industry leaders, and research institutions, providing critical expertise and infrastructure across a broad range of biotechnology production processes,” Veronica Breckenridge, founder of First Bight Ventures and BioWell, said in a news release.

First Bight Ventures shares that the partnership with the facility will also allow it to better support its portfolio companies and make them more attractive to future investors.

BioWell will host an open house and tours of the fermentation and lab spaces and an overview of current bioindustrial projects Wednesday, May 28, at 10:30 a.m. and 2 p.m. RSVPs are required.

BioWell was originally funded by a $700,000 U.S. Economic Development Administration’s Build to Scale grant and launched as a virtual accelerator for bioindustrial startups. Listen to an interview with Carlos Estrada, head of venture acceleration at BioWell, here.

Ultra-fast EV charging bays coming to Waffle House locations in Texas and beyond

power breakfast

Scattered, smothered and ... charged?

Starting next year, EV drivers can connect to ultra-fast charging stations at select Waffle House locations throughout Texas, courtesy of bp pulse.

The EV arm of British energy giant bp announced a strategic partnership with the all-day breakfast chain this week. The company aims to deploy a network of 400kW DC fast chargers and a mix of CCS and NACS connectors at Waffle House locations in Texas, Georgia, Florida, and other restaurants in the South.

Each Waffle House site will feature six ultra-fast EV charging bays, allowing drivers to "(enjoy) Waffle House’s 24/7 amenities," the announcement reads.

“Adding an iconic landmark like Waffle House to our growing portfolio of EV charging sites is such an exciting opportunity. As an integrated energy company, bp is committed to providing efficient solutions like ultra-fast charging to support our customers’ mobility needs," Sujay Sharma, CEO of bp pulse U.S., said in a news release. "We’re building a robust network of ultra-fast chargers across the country, and this is another example of third-party collaborations enabling access to charging co-located with convenient amenities for EV drivers.”

The news comes as bp pulse continues to grow its charging network in Texas.

The company debuted its new high-speed electric vehicle charging site, known as the Gigahub, at the bp America headquarters in Houston last year. In partnership with Hertz Electrifies Houston, it also previously announced plans to install a new EV fast-charging hub at Hobby Airport. In a recent partnership with Simon Malls, bp also shared plans to install EV charging Gigahubs at The Galleria and Katy Mills Mall.

bp has previously reported that it plans to invest $1 billion in EV charging infrastructure by 2030, with $500 million invested by the end of 2025.

---

A version of this article originally appeared on EnergyCapitalHTX.com.