CALI, a wearable physical therapy device for those with vertigo, pitched at the annual event. Photo via getcalibalance.com

For the sixth year, the University of Houston and Rice University have joined forces to give their student entrepreneurs a program to thrive in. RED Labs and OwlSpark, the two universities' accelerator programs, just concluded their seventh class with a presentation from the companies.

Over the past 12 weeks, these 16 startups and their teams of entrepreneurs have worked on their company, developing it, learning how to fundraise for it, and engaging with all sorts of other valuable resources and mentors through the program.

"With an emphasis on experimentation and rapid iteration, we teach disciplined startup strategies that help (students) have an eye for reducing risks and increasing odds," says Kerri Smith, managing director of OwlSpark.

This summer's cohort was hosted out of Station Houston this year, but the two universities have worked together since year two of each of their programs.

"We're very proud of our partnership, because in most other cities, two universities like this would probably be rivals, but we're interested in camaraderie and collaboration in this cohort because they are the future generation of entrepreneurs of Houston," says Kelly McCormick, director of RED Labs. "We really think that this sets an example of how working together produces better results than working against each other."

Adren

While the invention of the EpiPen and other compact anaphylaxis solutions have saved lives, the products are still too large to be constantly available to those who need it. Adren's co-founders created a collapsible autoinjector that can be work as a wristband.

"A functioning drug is only one piece of the puzzle," says Jacob, co-founder of Adren. (He didn't state his last name.) "Medication is only effective if it is accessible to the patient."

The company plans to continue on and patent their product with hopes to enter the marketplace by the next few years.

CookLab

Anyone can find a recipe for anything with the tap of a few keys and the click of of few buttons, but once you add in dietary restrictions, things get tricky. Not to mention the fact that so many healthy recipes aren't even that good for you.

The team at CookLab wants to eliminate this unregulated and confusing corner of the internet. CookLab's first product is a web tool that can determine whether or not a recipe is healthy by the user dropping in the URL. This product is in beta right now.

Down the road, CookLab wants to create a tool for users to be able to submit a recipe they want to make, then have CookLab generate a modified version that follows any dietary needs.

INSU

In a state of emergency where electricity is out, the diabetic population is forced to gamble with their lives when it comes to keeping their insulin insulated and cool.

INSU has a solution. The startup has created a battery operated cooler that can keep insulin from spoiling for 30 days. The battery can be charged by wall outlet or even solar panel.

The company plans to market directly to consumers as well as make strategic partnerships with emergency and health organizations.

auggie

Merchandise lines at concerts are quite possibly the single-most buzzkill of any show. In the age of UberEats and order-ahead apps, auggie sees a solution.

While you're at a show, you can easily order your favorite merch items on the app and choose to have it set aside for pickup that day or even get it mailed to you. The app is live on some downloading stores.

LilySpec

The speculum OB/GYNs use on their patients hasn't changed in 150 years, and, while effective, can be uncomfortable to patients during use. But this doesn't have to be the case.

LilySpec is a speculum designed with the patient in mind. The device is silently deployed, silicon coated for comfort, and adjustable for all women.

The LilySpec team will finish its clinical product this year, and the company's medical partners here in Texas will be able to use it on patients.

Myze

How do you staff a team for an unpredictable job? Emergency rooms face this challenge every single shift. Too many staffers makes the establishment bleed money, while too few causes burnout and even sacrifices quality of care.

Myze is developing a software platform that can use artificial intelligence and predictive analytics to help ERs better staff their teams.

CALI

Those suffering from Vertigo feel like the whole world has turned upside down. CALI is a device that helps those people turn it right back around.

The wearable device allows for users to do balance exercises and claim back control of their own situation.

DASH Innovations

For those relying on a catheter, changing it out requires 150 monthly procedures on average. Each one is another opportunity for infection.

DASH Innovations has created UrinControl, a urethral valve for pediatric patients that can be installed once a month and operated with a remote to control the bladder.

Get-A-Grip

Holding onto a cup is something most everyone takes for granted. For arthritis or muscle damage patients, it's a daunting daily task.

Get-A-Grip is designed to distribute the weight of the cup along the grip and make it easier and more comfortable to hold. While originally designed with these patients in mind, the grip comes in four sizes, with the smallest being perfect for babies grabbing at bottles or small children holding cups.

Everest Security

Preparing for and preventing phishing email-originated data breaches is the new normal for companies, but it's impossible to prevent employees from accidentally opening suspicious emails without thinking.

While there are plenty software protection companies out there, Everest Security couples their software solution with education, a core component for the company.

KickedOC

There are 2 million homes supposedly dedicated for off-campus housing for students, but no one-stop shop to find them. KickedOC is attempting to be that one-stop shop and make it easier for students to find their semester homes.

With listings already up in Houston, the startup hopes to expand its platform to College Station and other Texas college towns next.

Mismo Minds

Creating a creative team can be difficult if you don't have the connections already. Mismo Minds is a platform for artists, videographers, directors, etc. to join forces with others who share their creative vision. It's a social networking tool, project management platform, and job board all rolled into one.

Sports Betz

Typically for sports betting, you have two options: Impersonal bets with large pools or friendly wagers that might not ever pay off. Sports Betz is a platform where the competitive gamblers can casually bet with friends and family — but the money is pulled up front.

CIND

Chivalry is not dead, argues CIND, a new dating app. The app allows for potential matches to introduce themselves with a gift — which range from $2 to $100. Though, the recipient doesn't just walk away with the cash. The money actually goes to the recipient's nonprofit of choice. Only after the donation is made can matches start chatting.

CIND (pronounced like "Cindy") is basically digital donation dating, and everyone wins.

PCATCopycat

The Pharmacy College Admission Test isn't easy — and preparation isn't cheap.

PCATCopycat puts the power back into the hands of students. The online course is only $200 — way cheaper and easier for future pharmacists to navigate.

Second Act

Second Act is the startup that isn't. The non-company started the program with the idea of matching retirees with short-term work at various startups with the thought being that they have a lot of experience and a lot of time on their hands. While a great idea in theory, Second Act hit some walls and the company and idea are no more. The team, however, has a bright future in Houston innovation at other startups and companies.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

UH student earns prestigious award for cancer vaccine research

up-and-comer

Cole Woody, a biology major in the College of Natural Sciences and Mathematics at the University of Houston, has been awarded a Barry Goldwater Scholarship, becoming the first sophomore in UH history to earn the prestigious prize for research in natural sciences, mathematics and engineering.

Woody was recognized for his research on developing potential cancer vaccines through chimeric RNAs. The work specifically investigates how a vaccine can more aggressively target cancers.

Woody developed the MHCole Pipeline, a bioinformatic tool that predicts peptide-HLA binding affinities with nearly 100 percent improvement in data processing efficiency. The MHCole Pipeline aims to find cancer-specific targets and develop personalized vaccines. Woody is also a junior research associate at the UH Sequencing Core and works in Dr. Steven Hsesheng Lin’s lab at MD Anderson Cancer Center.

“Cole’s work ethic and dedication are unmatched,” Preethi Gunaratne, director of the UH Sequencing Core and professor of Biology & Biochemistry at NSM, said in a news release. “He consistently worked 60 to 70 hours a week, committing himself to learning new techniques and coding the MHCole pipeline.”

Woody plans to earn his MD-PhD and has been accepted into the Harvard/MIT MD-PhD Early Access to Research Training (HEART) program. According to UH, recipients of the Goldwater Scholarship often go on to win various nationally prestigious awards.

"Cole’s ability to independently design and implement such a transformative tool at such an early stage in his career demonstrates his exceptional technical acumen and creative problem-solving skills, which should go a long way towards a promising career in immuno-oncology,” Gunaratne added in the release.

Houston founder on shaping the future of medicine through biotechnology and resilience

Guest Column

Living with chronic disease has shaped my life in profound ways. My journey began in 5th grade when I was diagnosed with Scheuermann’s disease, a degenerative disc condition that kept me sidelined for an entire year. Later, I was diagnosed with hereditary neuropathy with liability to pressure palsies (HNPP), a condition that significantly impacts nerve recovery. These experiences didn’t just challenge me physically, they reshaped my perspective on healthcare — and ultimately set me on my path to entrepreneurship. What started as personal health struggles evolved into a mission to transform patient care through innovative biotechnology.

A defining part of living with these conditions was the diagnostic process. I underwent nerve tests that involved electrical shocks to my hands and arms — without anesthesia — to measure nerve activity. The pain was intense, and each test left me thinking: There has to be a better way. Even in those difficult moments, I found myself thinking about how to improve the tools and processes used in healthcare.

HNPP, in particular, has been a frustrating condition. For most people, sleeping on an arm might cause temporary numbness that disappears in an hour. For me, that same numbness can last six months. Even more debilitating is the loss of strength and fine motor skills. Living with this reality forced me to take an active role in understanding my health and seeking solutions, a mindset that would later shape my approach to leadership.

Growing up in Houston, I was surrounded by innovation. My grandfather, a pioneering urologist, was among the first to introduce kidney dialysis in the city in the 1950s. His dedication to advancing patient care initially inspired me to pursue medicine. Though my path eventually led me to healthcare administration and eventually biotech, his influence instilled in me a lifelong commitment to medicine and making a difference.

Houston’s thriving medical and entrepreneurial ecosystems played a critical role in my journey. The city’s culture of innovation and collaboration provided opportunities to explore solutions to unmet medical needs. When I transitioned from healthcare administration to founding biotech companies, I drew on the same resilience I had developed while managing my own health challenges.

My experience with chronic disease also shaped my leadership philosophy. Rather than accepting diagnoses passively, I took a proactive approach questioning assumptions, collaborating with experts, and seeking new solutions. These same principles now guide decision-making at FibroBiologics, where we are committed to developing groundbreaking therapies that go beyond symptom management to address the root causes of disease.

The resilience I built through my health struggles has been invaluable in navigating business challenges. While my early career in healthcare administration provided industry insights, launching and leading companies required the same determination I had relied on in my personal health journey.

I believe the future of healthcare lies in curative treatments, not just symptom management. Fibroblast cells hold the promise of engaging the body’s own healing processes — the most powerful cure for chronic diseases. Cell therapy represents both a scientific breakthrough and a significant business opportunity, one that has the potential to improve patient outcomes while reducing long-term healthcare costs.

Innovation in medicine isn’t just about technology; it’s about reimagining what’s possible. The future of healthcare is being written today. At FibroBiologics, our mission is driven by more than just financial success. We are focused on making a meaningful impact on patients’ lives, and this purpose-driven approach helps attract talent, engage stakeholders, and differentiate in the marketplace. Aligning business goals with patient needs isn’t just the right thing to do, it’s a powerful model for sustainable growth and lasting innovation in biotech.

---

Pete O’Heeron is the CEO and founder of FibroBiologics, a Houston-based regenerative medicine company.


Houston researchers make headway on affordable, sustainable sodium-ion battery

Energy Solutions

A new study by researchers from Rice University’s Department of Materials Science and NanoEngineering, Baylor University and the Indian Institute of Science Education and Research Thiruvananthapuram has introduced a solution that could help develop more affordable and sustainable sodium-ion batteries.

The findings were recently published in the journal Advanced Functional Materials.

The team worked with tiny cone- and disc-shaped carbon materials from oil and gas industry byproducts with a pure graphitic structure. The forms allow for more efficient energy storage with larger sodium and potassium ions, which is a challenge for anodes in battery research. Sodium and potassium are more widely available and cheaper than lithium.

“For years, we’ve known that sodium and potassium are attractive alternatives to lithium,” Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor of Engineering at Rice, said in a news release. “But the challenge has always been finding carbon-based anode materials that can store these larger ions efficiently.”

Lithium-ion batteries traditionally rely on graphite as an anode material. However, traditional graphite structures cannot efficiently store sodium or potassium energy, since the atoms are too big and interactions become too complex to slide in and out of graphite’s layers. The cone and disc structures “offer curvature and spacing that welcome sodium and potassium ions without the need for chemical doping (the process of intentionally adding small amounts of specific atoms or molecules to change its properties) or other artificial modifications,” according to the study.

“This is one of the first clear demonstrations of sodium-ion intercalation in pure graphitic materials with such stability,” Atin Pramanik, first author of the study and a postdoctoral associate in Ajayan’s lab, said in the release. “It challenges the belief that pure graphite can’t work with sodium.”

In lab tests, the carbon cones and discs stored about 230 milliamp-hours of charge per gram (mAh/g) by using sodium ions. They still held 151 mAh/g even after 2,000 fast charging cycles. They also worked with potassium-ion batteries.

“We believe this discovery opens up a new design space for battery anodes,” Ajayan added in the release. “Instead of changing the chemistry, we’re changing the shape, and that’s proving to be just as interesting.”

---

This story originally appeared on EnergyCapitalHTX.com.