The Rice Alliance has named its second annual cohort. Photo via Getty Images

The Rice Alliance for Technology and Entrepreneurship has announced the 17 companies joining its second accelerator — and the program didn't have to venture very far for some of them.

The Rice Alliance Clean Energy Accelerator named the early- to mid-stage startups that will participate in its second annual class — five of which are based in Houston:

  • CLS Wind is developing a unique system to lift any size wind turbine component to any height using smaller-capacity cranes, an efficient, safe and economical solution to a lack of available high-capacity cranes and vessels.
  • Dsider is developing a low code solution for climate minded organizations to visualize and analyze their carbon pathways to plan, prioritize and operate sustainably and economically.
  • Emission Critical is developing carbon accounting and management software as a service to help enterprises solve end-to-end carbon footprinting with minimum effort
  • NanoTech is developing advanced materials to help businesses and individuals solve fireproofing and thermal insulation challenges with new world particles.
  • Pressure Corp is developing waste pressure power systems to help midstream gas companies solve how they reduce emissions by providing the technology, capital and expertise required to achieve their environmental, social and governance goals.

The 10-week program kicks off at the university’s Rice Alliance Energy Tech Venture Forum in September, and concludes on Demo Day on Nov. 17. While mostly virtual, the program will welcome the complete cohort to Houston three times throughout the accelerator.

The full cohort of companies — which come from seven states and four countries — has already collectively raised more than $54.5 million. Over the 10 weeks, the companies will receive support and mentorship to help them raise funding, launch pilots, win adoption into the marketplace, and more.

The 2022 cohort specializes across the spectrum of clean energy, including advanced materials, digital technology for energy, energy efficiency, energy storage, geothermal energy, hydrogen, waste heat to power, wave energy, and wind energy. The rest of the cohort includes:

  • Atargis Energy, based in Colorado, is developing an innovative twin hydrofoil-based wave energy converter technology combined with a proprietary feedback control system that combines real-time sensors, predictive algorithms and machine learning to make possible the first predictable, low-cost, utility-scale baseload electricity sourced from ocean waves for utilities and other electricity providers.
  • Based in Somerville, Massachusetts, Eden GeoPower Inc. is developing electrical reservoir stimulation technology to help geothermal, petroleum and mineral resource developers solve issues with low-permeability reservoirs by effectively increasing permeability in a way that uses less water and emits less CO2 than traditional stimulation methods.
  • FuelX has developed solid-state hydrogen power systems to help transportation manufacturers meet their customers’ growing performance requirements by using high-energy-density systems that outperform batteries and other pure hydrogen solutions. When coupled with a green hydrogen raw material, FuelX systems provide zero-carbon power.
  • GeoGen Technologies — a Canadian company — is developing a new kind of geothermal that allows oil and gas companies to convert end of life oil and gas wells to economic geothermal.
  • Durham, North Carolina-based GOLeafe uses organic materials and non-energy or capital-intensive equipment toproduce graphene oxide — the world's strongest, thinnest and most conductive material — through a process that’s 10 times more cost efficient and eco-friendly using readily available materials such as hay, sugar and wood chips.
  • LiNa Energy is commercializing safe, sustainable, solid-state sodium batteries that contain no lithium or cobalt.
  • Luminescent, based in the United Kingdom, is building an isothermal expansion heat engine for waste heat recovery along gas transmission pipelines.
  • Nobel improves fuel efficiency for gas-fired power plants with drop in, reliable supersonic combustion technology.
  • Quino Energy — based in California — produces low-cost, long-lifetime aqueous organic flow batteries for grid storage applications. The charge is stored in specially designed organic molecules called quinones, which are produced from cheap chemical precursors in a proprietary, zero-waste process.
  • Viridly, based in Texas,is developing geothermal power plants with patent-pending generator technology alongside geothermal greenhouses to provide the first financially viable way to confidently deliver and scale up the development of baseload geothermal electricity.
  • Another Canadian company, Volta Technique’s compressed air storage and management technology addresses the unpredictable and ever-increasing cost of energy for large commercial and industrial electricity users while enabling decarbonization of the electricity grid through higher integration of renewable energy.
  • Wootz, another Texas company, is developing a scalable manufacturing process to produce sustainable, cost-effective, high-performance carbon nanotube materials at commercial scale to replace or enhance traditional metallic conductors.

Twelve companies participated in Class 1 of the Rice Alliance Clean Energy, which was delivered virtually last summer. The 12 startups in that inaugural class have raised a combined $6.5 million in funding, identified and launched pilots, met investors, hired staff and moved their offices to Houston.

The program is supported by founding sponsor Wells Fargo and supporters: BP, Baker Botts, Chevron, ExxonMobil, Halliburton Labs, Equinor, Microsoft, NRG, Saudi Aramco Energy Ventures, Shell Ventures, Sunnova, TotalEnergies, Tudor Pickering Holt, Canadian Consulate, TC Energy, Phillips 66, and ENI Next.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

2 Houston space tech cos. celebrate major tech milestones

big wins

Two Houston aerospace companies — Intuitive Machines and Venus Aerospace — have reached testing milestones for equipment they’re developing.

Intuitive Machines recently completed the first round of “human in the loop” testing for its Moon RACER (Reusable Autonomous Crewed Exploration Rover) lunar terrain vehicle. The company conducted the test at NASA’s Johnson Space Center.

RACER is one of three lunar terrain vehicles being considered by NASA for the space agency’s Artemis initiative, which will send astronauts to the moon.

NASA says human-in-the-loop testing can reveal design flaws and technical problems, and can lead to cost-efficient improvements. In addition, it can elevate the design process from 2D to 3D modeling.

Intuitive Machines says the testing “proved invaluable.” NASA astronauts served as test subjects who provided feedback about the Moon RACER’s functionality.

The Moon RACER, featuring a rechargeable electric battery and a robotic arm, will be able to accommodate two astronauts and more than 880 pounds of cargo. It’s being designed to pull a trailer loaded with more than 1,760 pounds of cargo.

Another Houston company, Venus Aerospace, recently achieved ignition of its VDR2 rocket engine. The engine, being developed in tandem with Ohio-based Velontra — which aims to produce hypersonic planes — combines the functions of a rotating detonation rocket engine with those of a ramjet.

A rotating detonation rocket engine, which isn’t equipped with moving parts, rapidly burns fuel via a supersonic detonation wave, according to the Air Force Research Laboratory. In turn, the engine delivers high performance in a small volume, the lab says. This savings in volume can offer range, speed, and affordability benefits compared with ramjets, rockets, and gas turbines.

A ramjet is a type of “air breathing” jet engine that does not include a rotary engine, according to the SKYbrary electronic database. Instead, it uses the forward motion of the engine to compress incoming air.

A ramjet can’t function at zero airspeed, so it can’t power an aircraft during all phases of flight, according to SKYbrary. Therefore, it must be paired with another kind of propulsion, such as a rotating detonation rocket engine, to enable acceleration at a speed where the ramjet can produce thrust.

“With this successful test and ignition, Venus Aerospace has demonstrated the exceptional ability to start a [ramjet] at takeoff speed, which is revolutionary,” the company says.

Venus Aerospace plans further testing of its engine in 2025.

Venus Aerospace, recently achieved ignition of its VDR2 rocket engine. Photo courtesy of Venus Aerospace

METRO rolls out electric shuttles for downtown Houston commuters

on a roll

The innovative METRO microtransit program will be expanding to the downtown area, the Metropolitan Transit Authority of Harris County announced on Monday.

“Microtransit is a proven solution to get more people where they need to go safely and efficiently,” Houston Mayor John Whitmire said in a statement. “Connected communities are safer communities, and bringing microtransit to Houston builds on my promise for smart, fiscally-sound infrastructure growth.”

The program started in June 2023 when the city’s nonprofit Evolve Houston partnered with the for-profit Ryde company to offer free shuttle service to residents of Second and Third Ward. The shuttles are all-electric and take riders to bus stops, medical buildings, and grocery stores. Essentially, it works as a traditional ride-share service but focuses on multiple passengers in areas where bus access may involve hazards or other obstacles. Riders access the system through the Ride Circuit app.

So far, the microtransit system has made a positive impact in the wards according to METRO. This has led to the current expansion into the downtown area. The system is not designed to replace the standard bus service, but to help riders navigate to it through areas where bus service is more difficult.

“Integrating microtransit into METRO’s public transit system demonstrates a commitment to finding innovative solutions that meet our customers where they are,” said METRO Board Chair Elizabeth Gonzalez Brock. “This on-demand service provides a flexible, easier way to reach METRO buses and rail lines and will grow ridership by solving the first- and last-mile challenges that have hindered people’s ability to choose METRO.”

The City of Houston approved a renewal of the microtransit program in July, authorizing Evolve Houston to spend $1.3 million on it. Some, like council member Letitia Plummer, have questioned whether microtransit is really the future for METRO as the service cuts lines such as the University Corridor.

However, the microtransit system serves clear and longstanding needs in Houston. Getting to and from bus stops in the city with its long blocks, spread-out communities, and fickle pedestrian ways can be difficult, especially for poor or disabled riders. While the bus and rail work fine for longer distances, shorter ones can be underserved.

Even in places like downtown where stops are plentiful, movement between them can still involve walks of a mile or more, and may not serve for short trips.

“Our microtransit service is a game-changer for connecting people, and we are thrilled to launch it in downtown Houston,” said Evolve executive director Casey Brown. “The all-electric, on-demand service complements METRO’s existing fixed-route systems while offering a new solution for short trips. This launch marks an important milestone for our service, and we look forward to introducing additional zones in the new year — improving access to public transit and local destinations.”

———

This article originally ran on CultureMap.