Meet the female health tech founders being accelerated by Ignite Healthcare this year. Photo courtesy of Ignite

Last month, a Houston organization dedicated to supporting female founders in health care kicked off its 2023 accelerator with cohort participants from across the country.

Ignite Healthcare Network, based in Houston, is a nonprofit founded on the mission of supporting women in health care. Ignite established its 12-week accelerator program to help advance and connect female health tech founders with mentors and potential clients as their startups scale.

"We have 19 founders doing great work, and we have them matched with three to four advisors helping to mentor them," Ayse McCracken, founder and board chair of Ignite tells InnovationMap. "We also have a virtual learning program, which is new this year, and we have two sessions of those a week."

The programming is curated to tackle the health tech industry's biggest topics and provide advice for a small group of engaged startups, McCracken explains. In its fifth year now, the program has a large group of partners that are involved.

"We've had 91 companies come through our program in the last fours years," McCracken says. "They've raised over $550 million."

The cohort concludes on November 9 with the Fire Pitch Competition at the Ion, where a handful of finalists — selected by Ignite's team of mentors — will present to win the top award.

This year's cohort includes:

  • Somer Baburek, CEO and co-founder of Hera Biotech
  • Sue Carr, president and founder of CarrTech Corp
  • Suchismita Acharya, CEO, chief strategy officer, and co-founder of AyuVis
  • Asma Mirza, CEO and founder of Steradian Technologies
  • J’Vanay Santos, CEO and founder of MyLÚA Health
  • Maureen Brown, CEO and co-founder of Mosie Baby
  • Elizabeth Friedman, president and founder of Safen Medical Products
  • Meghan Doyle, CEO and co-founder of Partum Health
  • Marina Tarasova, COO and co-founder of Paloma Health
  • Melissa Bowley, CEO and founder of Flourish Care
  • Molly Hegarty, CEO and founder of Junum
  • Patty Lee, CEO and co-founder of Orbit Health
  • Piyush Modak, Vice President of R&D and co-founder of EndoMedix
  • Debbie Chen, CEO and founder of Hydrostasis
  • Rachael Grimaldi, CEO and co-founder of CardMedic
  • Rachna Dhamija, CEO of Ejenta
  • Carolyn Treviño Jenkins, CEO and co-founder of We Are Here
  • Lyn Markey, CEO and co-founder of XTremedy
  • Camille O’Malley, CTO and co-founder of XTremedy
Last year, Joanna Nathan, CEO of Houston-based Prana Thoracic, won the top award for her company.
Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston space org to launch experiments aboard first mission into polar orbit

all aboard

Houston's Translational Research Institute for Space Health, or TRISH, will send its latest experiments into space aboard the Fram2 mission, the first all-civilian human spaceflight mission to launch over the Earth’s polar regions.

Fram2, operated by SpaceX, is targeting to launch Monday, March 31, at NASA’s Kennedy Space Center in Florida. The crew of four is expected to spend several days in polar orbit aboard the SpaceX Dragon spacecraft in low Earth orbit. TRISH’s research projects are among 22 experiments that the crew will conduct onboard.

The crew's findings will add to TRISH's Enhancing eXploration Platforms and ANalog Definition, or EXPAND, program and will be used to help enhance human health and performance during spaceflight missions, including missions to the moon and Mars, according to a release from TRISH.

“The valuable space health data that will be captured during Fram2 will advance our understanding of how humans respond and adapt to the stressors of space,” Jimmy Wu, TRISH deputy director and chief engineer and assistant professor in Baylor’s Center for Space Medicine, said in the release. “Thanks to the continued interest in furthering space health by commercial space crews, each human health research project sent into orbit brings us closer to improving crew member well-being aboard future spaceflight missions.”

The six TRISH projects on Fram2 include:

  • Cognitive and Physiologic Responses in Commercial Space Crew on Short-Duration Missions, led by Dr. Mathias Basner at the University of Pennsylvania Perelman School of Medicine. The crew will wear a Garmin smartwatch and a BioIntelliSense BioButton® medical grade device to track cognitive performance, including memory, spatial orientation, and attention before, during, and after the mission.
  • Otolith and Posture Evaluation II, led by Mark Shelhamer at Johns Hopkins University. The experiment will look at how astronauts’ eyes sense and respond to motion before and after spaceflight to better understand motion sickness in space.
  • REM and CAD Radiation Monitoring for Private Astronaut Spaceflight, led by Stuart George at NASA Johnson Space Center. This experiment will test space radiation exposure over the Earth’s north and south poles and how this impacts crew members.
  • Space Omics + BioBank, led by Richard Gibbs and Harsha Doddapaneni at Baylor College of Medicine. The experiment will use Baylor’s Human Genome Sequencing Center's Genomic Evaluation of Space Travel and Research program to gain insights from pre-flight and post-flight samples from astronauts.
  • Standardized research questionnaires, led by TRISH. The test asks a set of standardized research questionnaires for the crew to collect data on their sleep, personality, health history, team dynamics and immune-related symptoms.
  • Sensorimotor adaptation, led by TRISH. The project collects data before and after flight to understand sensorimotor abilities, change and recovery time to inform future missions to the moon.

TRISH, which is part of BCM’s Center for Space Medicine with partners Caltech and MIT, has launched experiments on numerous space missions to date, including Blue Origin's New Shepard rocket last November and Axiom Space's Ax-3 mission to the International Space Station last January.

Houston lab develops AI tool to improve neurodevelopmental diagnoses

developing news

One of the hardest parts of any medical condition is waiting for answers. Speeding up an accurate diagnosis can be a doctor’s greatest mercy to a family. A team at Baylor College of Medicine has created technology that may do exactly that.

Led by Dr. Ryan S. Dhindsa, assistant professor of pathology and immunology at Baylor and principal investigator at the Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, the scientists have developed an artificial intelligence-based approach that will help doctors to identify genes tied to neurodevelopmental disorders. Their research was recently published the American Journal of Human Genetics.

According to its website, Dhindsa Lab uses “human genomics, human stem cell models, and computational biology to advance precision medicine.” The diagnoses that stem from the new computational tool could include specific types of autism spectrum disorder, epilepsy and developmental delay, disorders that often don’t come with a genetic diagnosis.

“Although researchers have made major strides identifying different genes associated with neurodevelopmental disorders, many patients with these conditions still do not receive a genetic diagnosis, indicating that there are many more genes waiting to be discovered,” Dhindsa said in a news release.

Typically, scientists must sequence the genes of many people with a diagnosis, as well as people not affected by the disorder, to find new genes associated with a particular disease or disorder. That takes time, money, and a little bit of luck. AI minimizes the need for all three, explains Dhindsa: “We used AI to find patterns among genes already linked to neurodevelopmental diseases and predict additional genes that might also be involved in these disorders.”

The models, made using patterns expressed at the single-cell level, are augmented with north of 300 additional biological features, including data on how intolerant genes are to mutations, whether they interact with other known disease-associated genes, and their functional roles in different biological pathways.

Dhindsa says that these models have exceptionally high predictive value.

“Top-ranked genes were up to two-fold or six-fold, depending on the mode of inheritance, more enriched for high-confidence neurodevelopmental disorder risk genes compared to genic intolerance metrics alone,” he said in the release. “Additionally, some top-ranking genes were 45 to 500 times more likely to be supported by the literature than lower-ranking genes.”

That means that the models may actually validate genes that haven’t yet been proven to be involved in neurodevelopmental conditions. Gene discovery done with the help of AI could possibly become the new normal for families seeking answers beyond umbrella terms like “autism spectrum disorder.”

“We hope that our models will accelerate gene discovery and patient diagnoses, and future studies will assess this possibility,” Dhindsa added.

Texas robotics co. begins new search for missing Malaysia Airlines flight 370

International News

Malaysia’s government has given final approval for a Texas-based marine robotics company to renew the search for Malaysia Airlines Flight 370, which is believed to have crashed in the southern Indian Ocean more than a decade ago.

Cabinet ministers agreed to terms and conditions for a “no-find, no-fee” contract with Texas-based Ocean Infinity to resume the seabed search operation at a new 5,800-square-mile site in the ocean, Transport Minister Anthony Loke said in a statement Wednesday. Ocean Infinity will be paid $70 million only if wreckage is discovered.

The Boeing 777 plane vanished from radar shortly after taking off on March 8, 2014, carrying 239 people, mostly Chinese nationals, on a flight from Malaysia’s capital, Kuala Lumpur, to Beijing. Satellite data showed the plane turned from its flight path and headed south to the far-southern Indian Ocean, where it is believed to have crashed.

An expensive multinational search failed to turn up any clues to its location, although debris washed ashore on the east African coast and Indian Ocean islands. A private search in 2018 by Ocean Infinity also found nothing.

The final approval for a new search came three months after Malaysia gave the nod in principle to plans for a fresh search.

Ocean Infinity CEO Oliver Punkett earlier this year reportedly said the company had improved its technology since 2018. He has said the firm is working with many experts to analyze data and had narrowed the search area to the most likely site.

Loke said his ministry will ink a contract with Ocean Infinity soon but didn’t provide details on the terms. The firm has reportedly sent a search vessel to the site and indicated that January-April is the best period for the search.

“The government is committed to continuing the search operation and providing closure for the families of the passengers of flight MH370,” he said in a statement.