Houston researchers have uncovered why solid-state batteries break down and what could be done to slow the process. Photo via Getty Images

A team of researchers from the University of Houston, Rice University and Brown University has uncovered new findings that could extend battery life and potentially change the electric vehicle landscape.

The team, led by Yan Yao, the Hugh Roy and Lillie Cranz Cullen Distinguished Professor of Electrical and Computer Engineering at UH, recently published its findings in the journal Nature Communications.

The work deployed a powerful, high-resolution imaging technique known as operando scanning electron microscopy to better understand why solid-state batteries break down and what could be done to slow the process.

“This research solves a long-standing mystery about why solid-state batteries sometimes fail,” Yao, corresponding author of the study, said in a news release. “This discovery allows solid-state batteries to operate under lower pressure, which can reduce the need for bulky external casing and improve overall safety.”

A solid-state battery replaces liquid electrolytes found in conventional lithium-ion cells with a solid separator, according to Car and Driver. They also boast faster recharging capabilities, better safety and higher energy density.

However, when it comes to EVs, solid-state batteries are not ideal since they require high external stack pressure to stay intact while operating.

Yao’s team learned that tiny empty spaces, or voids, form within the solid-state batteries and merge into a large gap, which causes them to fail. The team found that adding small amounts of alloying elements, like magnesium, can help close the voids and help the battery continue to function. The team captured it in real-time with high-resolution videos that showed what happens inside a battery while it’s working under a scanning electron microscope.

“By carefully adjusting the battery’s chemistry, we can significantly lower the pressure needed to keep it stable,” Lihong Zhao, the first author of this work, a former postdoctoral researcher in Yao’s lab and now an assistant professor of electrical and computer engineering at UH, said in the release. “This breakthrough brings solid-state batteries much closer to being ready for real-world EV applications.”

The team says it plans to build on the alloy concept and explore other metals that could improve battery performance in the future.

“It’s about making future energy storage more reliable for everyone,” Zhao added.

The research was supported by the U.S. Department of Energy’s Battery 500 Consortium under the Vehicle Technologies Program. Other contributors were Min Feng from Brown; Chaoshan Wu, Liqun Guo, Zhaoyang Chen, Samprash Risal and Zheng Fan from UH; and Qing Ai and Jun Lou from Rice.

---

This article originally appeared on EnergyCaptialHTX.com.

The Tesla recall is for 2023 Model 3 and Model Y vehicles. Getty Images

Tesla recalling more than 375,000 vehicles due to power steering issue

Tesla Talk

Tesla is recalling more than 375,000 vehicles due to a power steering issue.

The recall is for certain 2023 Model 3 and Model Y vehicles operating software prior to 2023.38.4, according to the National Highway Traffic Safety Administration.

The printed circuit board for the electronic power steering assist may become overstressed, causing a loss of power steering assist when the vehicle reaches a stop and then accelerates again, the agency said.

The loss of power could required more effort to control the car by drivers, particularly at low speeds, increasing the risk of a crash.

Tesla isn't aware of any crashes, injuries, or deaths related to the condition.

The electric vehicle maker headed by Elon Musk has released a free software update to address the issue.

Letters are expected to be sent to vehicle owners on March 25. Owners may contact Tesla customer service at 1-877-798-3752 or the NHTSA at 1-888-327-4236.

Lilium aims for the first piloted flight of the Lilium Jet to occur early in 2025. Photo via lilium.com

First-of-its-kind electric jet to fly over greater Houston area

flying evs

An aircraft that's being touted as the first fully electric jet is taking off from Hobby Airport to serve the greater Houston area.

Lilium Jet, which takes off and lands vertically, is making its United States market debut at Houston-area facilities – Houston Hobby Airport, Conroe North Houston Regional Airport, and The Woodlands Heliport Lilium. Houston-based aircraft brokerage EMCJET will house the Lilium Jet at its Galaxy FBO Houston-area facilities at the airports.

“We are excited to transform Galaxy FBO into a cutting-edge hub for the eVTOL innovation,” Jeremy Gee, CEO of Galaxy FBO, says in a news release. "As the future of electric aviation takes flight, this marks a significant step in making Houston a leader in sustainable and efficient transportation solutions. Our team is proud to support Lilium's revolutionary mode of travel that will connect Greater Houston in ways never thought possible."

The Lilium Jet is capable of quickly connecting routes like Houston Hobby Airport to Galveston, Houston Spaceport to College Station, The Woodlands to Galveston, and others. The jet is designed for regional travel with its aerodynamic shape. The ducted electric fans prioritize efficiency and speed during forward flight. The jet’s anticipated initial operating range is roughly 110 miles. Lilium aims for the first piloted flight of the Lilium Jet to occur early in 2025.

“Lilium is serious about expanding in the U.S. and actively progressing towards FAA validation,” Lilium’s Vice President of Commercial Americas Matthew Broffman says in a news release.” As part of our commitment to working with communities across the U.S. and expanding our customer base, we’re excited to showcase our aircraft for the first time in Houston, a city with a proud legacy of aerospace innovation in America.”

The Greater Houston Partnership will also host a discussion with industry leaders on how electric aviation can “revolutionize regional travel” according to a news release.

“Houston is home to the world’s leading aerospace companies, and we’re thrilled to welcome Lilium and this next generation of aviation technology,” says Kevin Tipton, senior director for aerospace and aviation at GHP in a news release. “Together, we’re on the brink of something groundbreaking for our region.”

------

This article originally ran on EnergyCapital.

Two malls in town — The Galleria and Katy Mills Mall — soon see bp's EV charging Gigahubs. Photo via Wikipedia

Energy giant announces deal retail company to bring EV tech to Houston malls

coming soon

Two Houston-area malls will be getting bp's electric vehicle charging technology thanks to a new global collaboration.

The global energy company will be bringing its global EV charging business, bp pulse, to 75 shopping facilities across the country thanks to a partnership with Simon Malls. Two malls in town — The Galleria and Katy Mills Mall — soon see bp's EV charging Gigahubs. The company will install and operate the chargers at the two area sites.

The deal aims to deliver over 900 ultra-fast charging bays that will support most make and model of EVs with the first locations opening to the public in early 2026. Other Texas locations include Grapevine Mills in Grapevine, and Austin’s Barton Creek Square.

“We’re pleased to complete this deal with Simon and expand our ultra-fast charging network footprint in the U.S.,” Richard Bartlett, CEO of bp pulse, says in a news release. “The Simon portfolio aligns with bp pulse’s strategy to deploy ultra-fast charging across the West Coast, East Coast, Sun Belt and Great Lakes, and we are thrilled to team up with Simon so that EV drivers have a range of retail offerings at their impressive destinations.”

Last month, bp pulse opened a EV charging station at its North American headquarters in Houston. The company plans to continue deployment of additional charging points at high-demand spots like major metropolitan areas, bp-owned properties, and airports, according to bp.

“As a committed long term infrastructure player with a global network of EV charging solutions, bp pulse intends to continue to seek and build transformative industry collaborations in real estate required to scale our network and match the demand of current and future EV drivers,” Sujay Sharma, CEO bp pulse Americas, adds.

Here's a closer look at why Houston should be pushing for a more rapid transition to EVs. Photo via Getty Images

Why Houston should prioritize electric vehicle adoption in 2024

guest column

As urban populations increase and more vehicles hit the roads across the United States, the quality of the air is compromised, directly impacting health, environment, and quality of life ― especially for children, minorities, and other vulnerable populations. A 2023 study by Site Selection Group placed Houston at the vanguard of this trend, projecting the metro area to grow nearly 10 percent by 2028, eclipsing 8 million residents.

According to Evolve Houston, a nonprofit working to accelerate EV adoption by bringing together local public and private organizations, residents, and government, the transportation sector emits 47 percent of all greenhouse gas emissions in the Houston area.

In this context, electric vehicles offer a practical solution to mitigate the challenges posed by tailpipe emissions. Their adoption in urban settings has the potential to significantly improve air quality and enhance public health. It’s no wonder the upcoming Houston Auto Show will feature a dedicated EV Pavilion.

Here's a closer look at why Houston should be pushing for a more rapid transition to EVs:

  1. Children’s development is at stake: Early childhood is a critical period for brain development. However, toxic air pollutants can significantly inhibit this growth during these formative years. The consequences include impairing children’s cognitive capabilities in reading and math, akin to missing an entire month of elementary school.
  2. EVs counteract historical racial inequalities: Beyond being an environmental challenge, air pollution is a glaring racial and social justice issue. Areas with fewer White residents suffer almost triple the nitrogen dioxide levels compared to predominantly White zones, as highlighted by the National Academy of Sciences. Historically marginalized communities, often near major traffic corridors, endure heightened pollution exposure. Transitioning to EVs can help address these deeply ingrained environmental inequities.
  3. The health benefits are monumental: A brighter future awaits if EVs become mainstream. According to the American Lung Association, if all new vehicles sold by 2035 are zero-emission, the U.S. could see up to 89,300 fewer premature deaths by 2050. Additionally, asthma attacks might decline by 2 million, saving 10.7 million workdays and resulting in an incredible $978 billion in public health savings.
  4. Global success stories prove the benefits: The impact of mass EV adoption has already been demonstrated outside the U.S. For instance, Norway has seen a notable reduction in dangerous particle emissions since 87 percent of its new car sales are now fully electric. Likewise, California’s adoption of electric vehicles correlated with a 3.2% decrease in asthma-related ER visits between 2013 and 2019.
  5. Cities have the power and means to lead the way: Many global cities are trailblazers in the electric transition. New York City, with more than 4,000 government-owned EVs, is a prime example. Moreover, by electrifying their take-home fleets, cities can set a precedent for their communities. Seeing neighbors drive electric vehicles daily serves as a powerful endorsement, motivating nearby residents to make the switch. Incentives like public charging stations, free parking for EVs, rebates for home charger installations, reimbursing for charging at home, and reduced tolls, further bolster this movement.

Houstonians stand at a pivotal juncture. The choices made today concerning transportation will profoundly influence the health and well-being of residents tomorrow. The shift to electric vehicles is more than just an eco-friendly choice; it's a commitment to a brighter, cleaner future. By leading with action and vision, cities can create a legacy that upcoming generations will appreciate and thrive in.

------

Kate L. Harrison is the co-founder and head of marketing at MoveEV, an AI-backed EV transition company that helps organizations convert fleet and employee-owned gas vehicles to electric, and reimburse for charging at home.

This article originally ran on EnergyCapital.

Mercedes-Benz HPC North America says it will build EV charging hubs at most Buc-ee’s stores, starting with about 30 hubs by the end of 2024. Buc-ee's/Facebook

Texas gas station favorite plugs into partnership for EV chargers

eyes on ev

Buc-ee’s, the beloved Lake Jackson-based chain of convenience stores, has plugged into a partnership with a Mercedes-Benz business unit to install electric vehicle charging stations at Buc-ee’s locations.

Mercedes-Benz HPC North America says it will build EV charging hubs at most Buc-ee’s stores, starting with about 30 hubs by the end of 2024. Some Buc-ee’s hubs already are being set up and are scheduled to begin supplying EV power by the end of this year.

Mercedes-Benz HPC, a subsidiary of the German automaker, is developing a U.S. and Canadian network of EV charging stations. All of the stations will run solely on renewable energy.

“Buc-ee’s values people and partnerships,” Jeff Nadalo, general counsel at Buc-ee’s, says in a news release. “Our new collaboration with Mercedes-Benz HPC North America will continue our traditions of elevated customer convenience and excellent service that have won the hearts, trust, and business of millions in the South for more than 40 years.”

Buc-ee’s — hailed for its squeaky-clean restrooms, abundance of fuel pumps, and unique food — operates 34 supersized convenience stores in Texas and 12 locations in other states. Another seven locations are under construction in Texas, Colorado, Kentucky, Mississippi, and Missouri.

“Mercedes-Benz HPC North America's collaboration with Buc-ee’s represents an important moment in our pursuit of a national charging network that sets a new standard in both convenience and quality,” says Andrew Cornelia, president and CEO of Mercedes-Benz HPC.

“Within a remarkably short period,” Cornelia adds, “we’ve made significant strides towards opening several charging hubs at Buc-ee’s travel centers. Buc-ee’s strategic locations along major travel routes, combined with their commitment to clean and accessible amenities, aligns perfectly with our vision.”

In January 2023, Mercedes-Benz announced plans to install 10,000 EV chargers worldwide, including North America, Europe, and China. Mercedes-Benz drivers will be able to book a charging station from their car, but the network will be available to all motorists.

“The locations and surroundings of the Mercedes-Benz charging hubs will be carefully selected with wider customer needs in mind. Our best possible charging experience will therefore come with food outlets and restrooms situated nearby,” says Mercedes-Benz HPC.

Each hub will feature four to 12 chargers and ultimately as many as 30 chargers.

Mercedes-Benz says more than $1 billion is being invested in the North American charging network, which is set to be completed by 2029 or 2030. The cost will be split between the automaker and solar power producer MN8 Energy, a New York City-based spinoff of banking giant Goldman Sachs.

------

This article originally ran on EnergyCapital.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

How a Houston company is fighting anxiety, insomnia & Alzheimer’s through waveforms

mental health

A Houston-based company is taking a medicine-free approach to target brain neurologically associated with mental illness.

Nexalin Technology’s patented, FDA-cleared frequency-based waveform targets key centers of the midbrain to support the normalization of neurochemicals through a process known as Transcranial Alternating Current Stimulation (tACS). Delivered via a non-invasive device, the treatment gently stimulates the hypothalamus and midbrain, helping to “reset networks associated with symptoms” of anxiety and insomnia. Early clinical evidence suggests this approach can promote healthier brain function and improved sleep.

Through its recently appointed scientific advisory board (SAB), Nexalin also aims to target Alzheimer’s disease with a clinical development pipeline supported by published data and internal data from studies involving its proprietary DIFS technology. Nexalin’s Gen-2 SYNC and Gen-3 Halo headset delivers the DIFS, which is a waveform that can penetrate deep brain structures implicated in cognitive decline and mental illness.

The board includes experts in neurology, neuroimaging and neurodegenerative diseases with Dr. Mingxiong Huang, Dr. David Owens, and Dr. Abe Scheer coming on board. Nexalin plans to initiate new Alzheimer’s-focused clinical studies in the Q3 2025 by incorporating cognitive testing, imaging biomarkers, and guided metrics to assess treatment efficacy and neural activation.

“I am excited to work alongside Nexalin’s leadership and fellow SAB members to help guide the next generation of non-invasive neuromodulation therapies,” Huang said in a news release. “The intersection of neuroimaging, brain stimulation, and clinical science holds enormous potential for treating neurodegenerative disease.”

Recently, Nexalin’s proprietary neurostimulation device moved forward with a clinical trial that evaluated its treatment of anxiety disorders and chronic insomnia in Brazil. The first of Nexalin’s Gen-2 15-milliamp neurostimulation devices was shipped to São Paulo, Brazil, and the study will be conducted at the Instituto de Psiquiatria University Hospital (IPq-HCFMUSP). The shipments aim to support the launch of a Phase II clinical trial in adult patients suffering from anxiety and insomnia. The Nexalin Gen-2 15-milliamp neurostimulation device has also been approved in China, Brazil and Oman. Its Gen 1 device first received FDA clearance in 2003, according to the company's website.

The company also enrolled the first patients in its clinical trial at the University of California, San Diego, in collaboration with the VA San Diego Healthcare System for its Nexalin HALO, which looks to treat mild traumatic brain injury and post-traumatic stress disorder in military personnel and the civilian population.

Nexalin previously raised $5 million through a

public stock offering.

Houston innovation hub announces first cohort for energy-focused accelerator

Powering Up

Energytech Nexus, a Houston-based hub for energy startups, has named its inaugural cohort of 14 companies for the new COPILOT accelerator.

COPILOT partners with Browning the Green Space, a nonprofit that promotes diversity, equity and inclusion (DEI) in the clean energy and climatech sectors. The Wells Fargo Innovation Incubator (IN²) at the National Renewable Energy Laboratory backs the COPILOT accelerator.

The eight-month COPILOT program offers mentorship, training and networking for startups. Program participants will be tasked with developing pilot projects for their innovations.

Two Houston startups are members of the first COPILOT class:

  • GeoFuels, housed at Houston’s Greentown Labs, has come up with a novel approach to hydrogen production that relies on geothermal power and methane decomposition.
  • PolyQor, which converts plastic waste into eco-friendly construction materials. Its flagship EcoGrete product is an additive for concrete that enhances its properties while reducing carbon emissions. PolyQor’s headquarters is at Houston’s Greentown Labs.

Other members of the COPILOT cohort are:

  • Birmingham, Alabama-based Accelerate Wind, developer of a wind turbine for commercial buildings.
  • Ann Arbor, Michigan-based Aquora Biosystems, which specializes in organic waste biorefineries.
  • Phoenix-based EarthEn Energy, a developer of technology for thermo-mechanical energy storage.
  • New York City-based Electromaim, which installs small hydro-generators in buildings’ water systems.
  • Chandler, Arizona-based EnKoat, an advanced materials company whose flagship product, the IntelliKoat System, is a patented two-layer thermal and weather barrier roof coating for flat and low-slope commercial buildings.
  • Calgary, Canada-based Harber Coatings, which manufactures electroless nickel coating and electroless nickel plating.
  • Dallas-based Janta Power, which designs and makes 3D solar towers.
  • Miami-based NanoSieve, a developer of gas remediation technology.
  • Palo Alto, California-based Popper Power, which has developed a platform that turns streetlight networks into resilient, maintenance-free distributed charging infrastructure.
  • Buffalo, New York-based Siva Powers America, developer of small wind turbines for farms, utility companies and others with annual energy needs of 300,000 to 2 million kilowatt-hours.
  • Los Angeles-based Thermoshade, which specializes in cooling panels for outdoor environments.
  • Waukesha, Wisconsin-based V-Glass, Inc., developer of a vacuum-insulated glass for affordable high-efficiency windows.

“These startups reflect the future of energy access and resilience innovation,” said Juliana Garaizar, founding partner of Energytech Nexus. “By connecting them directly with partners through COPILOT, we’re helping them overcome the ‘pilot gap’ to build solutions that scale.”

The startups will run pilot projects along the Gulf Coast for their inventions.

Rice University's top innovation exec leaving for new role at UVA

moving on

Paul Cherukuri, Rice University's top innovation executive, responsible for some of Rice’s major innovative projects like the Rice BioTech LaunchPad and Rice Nexus, will leave the university next month to accept a position at the University of Virginia.

Cherukuri, Rice’s first vice president for innovation and chief innovation officer, will become the University of Virginia’s Donna and Richard Tadler University Professor of Entrepreneurship and the school's first chief innovation officer, according to a release from Rice. Cherukuri, who has served for more than 10 years at Rice, plans to depart his current position on Sept. 30.

Adrian Trömel, associate vice president for innovation strategy and investments at Rice, will serve as interim vice president for innovation and chief innovation officer after Cherukuri departs, and as the university starts an international search for his replacement.

“We appointed Paul to build an ambitious and high-functioning innovation operation, and he has succeeded remarkably in short order,” Rice President Reginald DesRoches said in the release. “In every area, from technology translation and startup creation to commercialization and entrepreneurship training, he has led the effort to vastly improve our structure, operations and relationships. He has contributed immensely both to our strategies and their implementation across numerous areas, and we’ll miss him greatly.”

Cherukuri is a physicist, chemist and medical technology entrepreneur, and has been a member of DesRoches’ leadership team since 2022. Cherukuri served as executive director of Rice’s Institute of Biosciences and Bioengineering from 2016 to 2022, where he helped in the development of interdisciplinary translational research partnerships with federal and corporate agencies. His work helped earn nearly $37 million in funding for accelerating the development of new technologies into commercial products. In the energy transition field, Cherukuri led a $12.5 million partnership with Woodside Energy to transform greenhouse gases into advanced nanomaterials for next-generation batteries and transistors.

Initiatives the Rice Biotech Launch Pad, an accelerator focused on expediting the translation of the university’s health and medical technology; RBL LLC, a biotech venture studio in the Texas Medical Center’s Helix Park dedicated to commercializing lifesaving medical technologies from the Launch Pad; and Rice Nexus, an AI-focused "innovation factory" at the Ion; were all launched under Cherukuri’s leadership. With his work at the Ion, Cherukuri also led the announcement of a partnership with North America’s largest climate tech incubator, Greentown Labs.

“I am proud of the relentless innovative spirit we have built for Rice in Houston and around the world,” Cherukuri said in the release. “I look forward to bringing new energy and vision to UVA’s efforts in this critical space for our country, its success and future.”