One of the winning teams at Climathon has an idea for a microgrid system in Houston's emerging innovation corridor. Photo via houston.org

More than 6,000 participants in 145 cities around the world gathered virtually for last year's Climathon, a global event put on by Impact Hub Houston to unite innovators and collaborate on climate solutions. When Winter Storm Uri left the Texas energy grid in a state of crisis, one Climathon Houston team's proposal for energy reliability became all the more important.

Last year, the City of Houston unveiled its first Climate Action Plan to address the city's challenges and strive to lead the energy transition. It was the perfect roadmap for Climathon Houston, a hackathon where eleven teams gathered to develop and pitch a concept to align with the city's new plan.

Of the three winning teams, one idea was prescient in its approach to energy. Six energy-focused Texans drew up plans for InnoGrid, a cost-effective strategy to build the first microgrid in Houston. What started as a pitch has become a developed proposal gaining collaborator and city interest in the wake of Uri.

Bryan Gottfried, Edward D. Pettitt II, Andi Littlejohn, Paresh Patel, Ben Jawdat, and Gavin Dillingham created InnoGrid to to help achieve the CAP's energy transition and net-zero emissions goals. With climate events increasing rapidly, the team of innovators saw an opportunity to create a sustainable solution — the first Houston microgrid.

In just an hour and a half of brainstorming, the team sought to create a similar model to Austin's Whisper Valley microgrid — a project that's currently in development. While Whisper Valley is a master plan community, the team wanted to create a microgrid to support a larger picture: the city of Houston.

"I had been following transactive energy models [such as] peer-to-peer electricity trading like Brooklyn Microgrid/LO3 Energy and Power Ledger since their inception. This inspired my vision for a novel microgrid that would demonstrate such technologies in the energy capital of the world that is otherwise primarily focused on oil and gas, and natural resources," explains Patel, founder and CEO of e^2: Equitable Energy. 

When Pettitt joined the group, he proposed the growing Houston Innovation Corridor as the home to InnoGrid. The four-mile stretch between the Texas Medical Center and Downtown is already home to green technology, making it an ideal fit.

"You're going into an area that was already being redeveloped and had this innovation kind of mentality already," explains Gottfried, a geoscientist and current MBA student at University of Houston Bauer College of Business.

After winning Climathon Houston, the team continued to meet weekly in hopes of making InnoGrid a reality.

The case for a microgrid

The InnoGrid team started with the goal of making energy reliable and resilient in the face of climate change. While previous storms like Hurricane Ike have left millions of Texans without power, Winter Storm Uri was one of the most destructive tragedies to face Texas. The unexpected February storm left 4.5 million Texans without electricity and resulted in at least 111 deaths.

As InnoGrid's team members struggled with burst pipes and loss of power, the team juggled the task of submitting a grant application to the Department of Energy during a catastrophic winter storm. The timing was not lost on them.

"It underscored the need for us to do something like this," shares Gottfried.

To understand how impactful a Houston microgrid can be, you first must understand how a microgrid works. A microgrid is a local energy grid made of a network of generators combined with energy storage. The microgrid has control capability, meaning it can disconnect from a macro grid and run autonomously.

Ultimately, microgrids can provide reliability and drive down carbon emissions. Using smart meters, the grids can even provide real-time energy data to show the inflow and outflow of electricity. In the instance a microgrid does go down, it only affects the community — not the entire state. Likewise, during a power outage to the main grid, a microgrid can break away and run on its own.

Microgrids have been deployed by other cities to mitigate the physical and economic risks caused by power outages, but the use of a project like InnoGrid feels especially timely given recent events and the limitations of the Texas Interconnect.

The Texas grid is isolated by choice, separated from the eastern and western interconnects. Texas' isolated energy grid resulted in a massive failure, proving deregulation can certainly backfire. Updating the electric grid has an expensive price tag, but microgrids show a promising and cost-effective model for the future.

"I thought if microgrids and mini-grids are enabling millions in off-grid frontier markets at the base of the pyramid [like Asia, Sub-Saharan Africa, etc.] to essentially leapfrog legacy energy infrastructure, why should we not upgrade our aging power system with the latest tech that is digitalized, decarbonized, decentralized/distributed, and democratized at the top of the pyramid," asks Patel.

Many hospitals, universities, and large technology firms have already established their own microgrids to protect equipment and provide safety. Still, smaller businesses and homes in the community can suffer during outages.

InnoGrid's proposal seeks to use existing and proven renewable energy sources like wind, solar and geothermal energy. The storage technologies used would include battery, kinetic, compressed air, and geomechanical pumped storage.

"From the perspective of an early-stage hardware startup, one of the most important things is finding a way to validate and test your technology," explains Jawdat, founder and CEO of Revterra and adviser to the InnoGrid team. He explains that the microgrid "can also be a testbed for new technologies, specifically, new energy storage technologies," through potential partnerships with companies like Greentown Labs, which is opening its Houston location soon.

Battling inequity 

While the outlook for a community microgrid is enticing, there are also challenges to address. One key challenge is inequity, which is a key focus of Pettitt who was drawn to the team's goal of providing stability for companies and residences in Houston.

Pettitt, who is seeking a Ph.D. in urban planning and environmental policy at Texas Southern University, has a background in public health and frequently works with the Houston Coalition for Equitable Development without Displacement. "I'm really looking at the intersection of the built environment and how to make cities healthier for its residents," he shares.

"A lot of companies are trying to prevent this climate crisis where we have climate refugees that can't live in certain areas because of ecological damage. But in the process, we don't want to create economic refugees from the gentrification of bringing all of these companies and higher-wage jobs into an area without providing folks the ability to benefit from those jobs and the positive externalities of that development," explains Pettitt.

The InnoGrid would plan to provide positive externalities in the form of energy subsidies and potentially even job training for people who want to work on the grid.

Power to the consumer

Much like the gamification in feel-good fitness trackers and e-learning tools, reward systems can inspire friendly competition and community engagement. InnoGrid's proposal seeks to challenge other major cities to build their own grids and compete with a gamified system.

The Innovation Corridor is currently undergoing major redevelopment, the first 16 acres of which are being developed by Rice Management Company and will be anchored by The Ion, which is opening soon. The timing of this redevelopment would allow a prospective project like InnoGrid to build in visual and interactive aspects that depict energy usage and carbon offsetting.

The microgrid's statistics would also engage Houstonians by sharing up-to-date data through dashboards, apps, and even billboards to track Houston's carbon footprint. Pettitt paints a picture of interactive sidewalk structures, leaderboards, and digital billboards in the public realm to showcase how energy is used day-to-day. The team hopes to build positive feedback cycles that encourage tenants and building owners to be more energy-efficient.

"If we're having an Innovation Corridor, an innovation district, I think the built environment should be innovative too," explains Pettitt.

The future of InnoGrid

Every innovation has to start somewhere. While InnoGrid is in its early stages, the team is working to establish partners and collaborators to make the project a reality.

Inspired by projects like the Brooklyn Microgrid, InnoGrid is in the process of pursuing partnerships with utilities and energy retailers to form a dynamic energy marketplace that pools local distributed energy resources. The team hopes to collaborate with microgrid experts from around the nation like Schneider Electric and SunPower. Other potential collaborators include The Ion, CenterPoint, Greentown Labs, and Rice Management Company.

Can Houston remain the energy capital of the world as it transitions to a net-zero energy future? The InnoGrid team wants to make that happen. The argument for a microgrid in Houston feels even more fitting when you look at the landscape.

"If we are going to create an innovative microgrid that also functions as a testbed for innovators and startups, [we] have proximity to some of the biggest utilities and power generation players right in that sector," explains Patel, who is also an inaugural member of Greentown Labs Houston.

"The microgrid itself is not novel. I think what makes it compelling is to situate that right here in the heart of the energy capital as we, again, reincarnate as the energy transition capital world," Patel continues.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston hardtech accelerator names 8 scientists to 2025 cohort

ready, set, activate

National hardtech-focused organization Activate has named its 2025 cohort of scientists, which includes new members to Activate Houston.

The Houston hub was introduced last year, and joins others in Boston, New York, and Berkley, California—where Activate is headquartered. The organization also offers a virtual and remote cohort, known as Activate Anywhere. Collectively, the 2025 Activate Fellowship consists of 47 scientists and engineers from nine U.S. states.

This year's cohort comprises subject matter experts across various fields, including quantum, robotics, biology, agriculture, energy and direct air capture.

Activate aims to support scientists at "the outset of their entrepreneurial journey." It partners with U.S.-based funders and research institutions to support its fellows in developing high-impact technology. The fellows receive a living stipend, connections from Activate's robust network of mentors and access to a curriculum specific to the program for two years.

“Science entrepreneurship is the origin story of tomorrow’s industries,” Cyrus Wadia, CEO of Activate, said in an announcement. “The U.S. has long been a world center for science leadership and technological advancement. When it comes to solving the world’s biggest challenges, hard-tech innovation is how we unlock the best solutions. From infrastructure to energy to agriculture, these Activate Fellows are the bold thinkers who are building the next generation of science-focused companies to lead us into the future.”

The Houston fellows selected for the 2025 class include:

  • Jonathan Bessette, founder and CEO of KIRA, which uses its adaptive electrodialysis system to treat diverse water sources and reduce CO2 emissions
  • Victoria Coll Araoz, co-founder and chief science officer of Florida-based SEMION, an agricultural technology company developing pest control strategies by restoring crops' natural defenses
  • Eugene Chung, co-founder and CEO of Lift Biolabs, a biomanufacturing company developing low-cost, nanobubble-based purification reagents. Chung is completing his Ph.D. in bioengineering at Rice University.
  • Isaac Ju, co-founder of EarthFlow AI, which has developed an AI-powered platform for subsurface modeling, enabling the rapid scaling of carbon storage, geothermal energy and lithium extraction
  • Junho Lee, principal geotechnical engineer of Houston-based Deep Anchor Solutions, a startup developing innovative anchoring systems for floating renewables and offshore infrastructure
  • Sotiria (Iria) Mostrou, principal inventor at Houston-based Biosimo Chemicals, a chemical engineering startup that develops and operates processes to produce bio-based platform chemicals
  • Becca Segel, CEO and founder of Pittsburgh-based FlowCellutions, which prevents power outages for critical infrastructure such as hospitals, data centers and the grid through predictive battery diagnostics
  • Joshua Yang, CEO and co‑founder of Cambridge, Massachusetts-based Brightlight Photonics, which develops chip-scale titanium: sapphire lasers to bring cost-effective, lab-grade performance to quantum technologies, diagnostics and advanced manufacturing

The program, led locally by Houston Managing Director Jeremy Pitts, has supported 296 Activate fellows since the organization was founded in 2015. Members have gone on to raise roughly $4 billion in follow-on funding, according to Activate's website.

Activate officially named its Houston office in the Ion last year.

Charlie Childs, co-founder and CEO of Intero Biosystems, which won both the top-place finish and the largest total investment at this year's Rice Business Plan Competition, was named to the Activate Anywhere cohort. Read more about the Boston, New York, Berkley and Activate Anywhere cohorts here.

Houston team’s discovery brings solid-state batteries closer to EV use

A Better Battery

A team of researchers from the University of Houston, Rice University and Brown University has uncovered new findings that could extend battery life and potentially change the electric vehicle landscape.

The team, led by Yan Yao, the Hugh Roy and Lillie Cranz Cullen Distinguished Professor of Electrical and Computer Engineering at UH, recently published its findings in the journal Nature Communications.

The work deployed a powerful, high-resolution imaging technique known as operando scanning electron microscopy to better understand why solid-state batteries break down and what could be done to slow the process.

“This research solves a long-standing mystery about why solid-state batteries sometimes fail,” Yao, corresponding author of the study, said in a news release. “This discovery allows solid-state batteries to operate under lower pressure, which can reduce the need for bulky external casing and improve overall safety.”

A solid-state battery replaces liquid electrolytes found in conventional lithium-ion cells with a solid separator, according to Car and Driver. They also boast faster recharging capabilities, better safety and higher energy density.

However, when it comes to EVs, solid-state batteries are not ideal since they require high external stack pressure to stay intact while operating.

Yao’s team learned that tiny empty spaces, or voids, form within the solid-state batteries and merge into a large gap, which causes them to fail. The team found that adding small amounts of alloying elements, like magnesium, can help close the voids and help the battery continue to function. The team captured it in real-time with high-resolution videos that showed what happens inside a battery while it’s working under a scanning electron microscope.

“By carefully adjusting the battery’s chemistry, we can significantly lower the pressure needed to keep it stable,” Lihong Zhao, the first author of this work, a former postdoctoral researcher in Yao’s lab and now an assistant professor of electrical and computer engineering at UH, said in the release. “This breakthrough brings solid-state batteries much closer to being ready for real-world EV applications.”

The team says it plans to build on the alloy concept and explore other metals that could improve battery performance in the future.

“It’s about making future energy storage more reliable for everyone,” Zhao added.

The research was supported by the U.S. Department of Energy’s Battery 500 Consortium under the Vehicle Technologies Program. Other contributors were Min Feng from Brown; Chaoshan Wu, Liqun Guo, Zhaoyang Chen, Samprash Risal and Zheng Fan from UH; and Qing Ai and Jun Lou from Rice.

---

This article originally appeared on EnergyCaptialHTX.com.

Rice biotech accelerator appoints 2 leading researchers to team

Launch Pad

The Rice Biotech Launch Pad, which is focused on expediting the translation of Rice University’s health and medical technology discoveries into cures, has named Amanda Nash and Kelsey L. Swingle to its leadership team.

Both are assistant professors in Rice’s Department of Bioengineering and will bring “valuable perspective” to the Houston-based accelerator, according to Rice. 

“Their deep understanding of both the scientific rigor required for successful innovation and the commercial strategies necessary to bring these technologies to market will be invaluable as we continue to build our portfolio of lifesaving medical technologies,” Omid Veiseh, faculty director of the Launch Pad, said in a news release.

Amanda Nash

Nash leads a research program focused on developing cell communication technologies to treat cancer, autoimmune diseases and aging. She previously trained as a management consultant at McKinsey & Co., where she specialized in business development, portfolio strategy and operational excellence for pharmaceutical and medtech companies. She earned her doctorate in bioengineering from Rice and helped develop implantable cytokine factories for the treatment of ovarian cancer. She holds a bachelor’s degree in biomedical engineering from the University of Houston.

“Returning to Rice represents a full-circle moment in my career, from conducting my doctoral research here to gaining strategic insights at McKinsey and now bringing that combined perspective back to advance Houston’s biotech ecosystem,” Nash said in the release. “The Launch Pad represents exactly the kind of translational bridge our industry needs. I look forward to helping researchers navigate the complex path from discovery to commercialization.”

Kelsey L. Swingle

Swingle’s research focuses on engineering lipid-based nanoparticle technologies for drug delivery to reproductive tissues, which includes the placenta. She completed her doctorate in bioengineering at the University of Pennsylvania, where she developed novel mRNA lipid nanoparticles for the treatment of preeclampsia. She received her bachelor’s degree in biomedical engineering from Case Western Reserve University and is a National Science Foundation Graduate Research Fellow.

“What draws me to the Rice Biotech Launch Pad is its commitment to addressing the most pressing unmet medical needs,” Swingle added in the release. “My research in women’s health has shown me how innovation at the intersection of biomaterials and medicine can tackle challenges that have been overlooked for far too long. I am thrilled to join a team that shares this vision of designing cutting-edge technologies to create meaningful impact for underserved patient populations.”

The Rice Biotech Launch Pad opened in 2023. It held the official launch and lab opening of RBL LLC, a biotech venture creation studio in May. Read more here.