Houston medical device startup names new CEO

now at the helm

Houston-based Saranas has tapped a new leader amidst push to commercialize bleed detection technology. Photo via LinkedIn

Houston-based medical device company Saranas has tapped a veteran of the healthcare industry as its new CEO.

Mike MacKinnon most recently was president and partner at Madison Ventures +, a private equity firm based in Greenwood Village, Colorado. The firm invests in companies in healthcare, real estate, finance, and other sectors.

Before joining Madison Ventures +, MacKinnon was CEO of Zidan Medical, a startup focused on treatment of airway lesions in patients with early stage lung cancer. He served in that role from 2019 to 2023.

Earlier, he was CEO of ROX Medical, a medical device company specializing in minimally invasive vascular therapy for patients with uncontrolled high blood pressure. He held that role from 2018 to 2019. He previously worked at Philips North America, Volcano, AtheroMed, Hansen Medical, Access Closure, and FoxHollow Technologies.

In a news release, Dan Wolterman, chairman of Saranas’ board and former president and CEO of Memorial Hermann Health System, calls MacKinnon “an accomplished executive with an impressive record of bringing disruptive technology to market, guiding strategy, and driving significant growth.”

Now president and CEO of Nashua, New Hampshire-based medical device company Conformal Medical, James Reinstein was president and CEO of Saranas from 2020 to 2022. Prior to Reinstein, Zaffer Syed held that position from 2017 to 2020. He's still an adviser for the company and recently announced his role as entrepreneur in residence at the Texas Medical Center.

Saranas is working on commercializing its Early Bird Bleed Monitoring System, touted as the first and only system FDA-approved bleeding detection system for procedures involving blood vessels. It is designed to detect bleeds early, enabling physicians to reduce medical risks and potentially avoid costly medical problems.

“Bleeding remains a common issue during and after endovascular procedures and can result in life-threatening complications,” says MacKinnon.

Since being founded in 2013, Saranas has treated over 1,200 patients with its device and has received $29.2 million in funding, according to Crunchbase. This includes a $12.8 million Series B round that Saranas got in 2021 from Chicago-based Baird Capital and Austin-based S3 Ventures.

The Early Bird device was developed at Houston’s Texas Heart Institute. The FDA approved the device in 2019.

James Reinstein joins the Houston Innovators Podcast to discuss what's next for growing medical device company, Saranas. Photo courtesy

Health tech executive leads Houston startup into its next generation following $12.8M series B

houston innovators podcast episode 103

When James Reinstein took the helm of Houston-based Saranas in March 2020, he was tasked with taking the medical device company through its series B funding round and into larger clinical trials. Navigating these tasks during a global pandemic wasn't part of the plan.

"There was just so much uncertainty," Reinstein says on this week's episode of the Houston Innovators Podcast. "All of the funds didn't know which end was up, what hospitals would be doing, what procedures were going to begin again."

Saranas received FDA approval and began its clinical trials for its Early Bird Bleed Monitoring System in 2019. The device is designed to detect and track bleeding complications related to endovascular procedures. These medical procedures treat problems, such as aneurysms, that affect blood vessels. Around 20 percent of patients suffer a bleeding complication during endovascular procedures.

Reinstein explains that the way health tech funding trended over the past 18 months greatly affected Saranas. The device fell outside the parameters of what investors were looking for during this pandemic time. However, Reinstein explains, the Early Bird worked and had FDA approval — that made all the difference.

"We are very confident that the product does work and it can have a significant impact for hospitals and patients," Reinstein says. "Eventually, the term sheets came in."

Saranas announced in July that it closed a $12.8 million series B investment led by Wisconsin-based Baird Capital, the venture capital and global private equity arm of Baird, a global company with a location in Houston. Austin-based S3 Ventures also supported the round.

The funds will propel Saranas into its next phase, which includes growing its team, larger trials, and a next-generation product.

Reinstein has had decades in health care innovation all over the world, with a large chunk of his career at Boston Scientific. He's seen Houston's innovation ecosystem evolve.

"I do think that there's a great potential for Houston to really develop the industry," Reinstein says. "There's just two areas that need to get fortified. One is the funding and getting the funds directed to Houston companies — with the idea that the company stays in Houston. ... The other side of the coin is really finding the talent to come in and run the companies, take on leadership positions."

Reinstein shares more details on what's next for Saranas, as well as his advice for med tech entrepreneurs and observations on Houston's innovation ecosystem on the show. Listen to the full interview below — or wherever you stream your podcasts — and subscribe for weekly episodes.


The results are in for Houston-based Saranas' clinical trials. Courtesy of Saranas

Houston early bleeding detection device company reveals results of its clinical trials

blood tests

A Houston-based startup is closer to taking flight with a medical device designed to catch bleeding complications during medical procedures that involve blood vessels.

On May 22, researchers presented the results of a study showing the Early Bird Bleed Monitoring System from Houston-based Saranas Inc. detected various levels of bleeding in 63 percent of the patients who underwent endovascular procedures. These procedures treat problems, such as aortic aneurysms, that affect blood vessels.

No troubles were reported with the Early Bird device during the clinical trial, the researchers say.

Before this study, the Early Bird device hadn't been tested in humans. In all, 60 patients in five states participated in the clinical trial, which ran from August to December last year. Findings of the study were unveiled at the Society for Cardiovascular Angiography Interventions 2019 Scientific Sessions in Las Vegas.

The study's authors say they plan to continue evaluating the device at medical institutions that want to better manage bleeding during endovascular procedures.

"This is the first time we're seeing how this device could help in a real-world patient setting, and we were very encouraged by the results. Right now, patients have a risk of vessel injury when undergoing endovascular procedures where the femoral artery or vein is used for vascular access," Dr. Philippe Genereux, principal investigator for the study and a cardiologist at Morristown Medical Center in Morristown, New Jersey, says in a news release.

"This technology allows us to detect bleeding in real-time," Genereux adds, "which means we can take action quickly and improve the outcomes of the procedure and recovery for the patient."

In March, the Early Bird device — invented at Houston's Texas Heart Institute — received the U.S. Food and Drug Administration's approval as a "novel" medical device.

Saranas says Early Bird is the first and only device of its type. The FDA approval and the promising results of the clinical trial pave the way for the eventual launch of the device into the healthcare market.

A forecast from professional services firm KPMG predicts the global market for medical devices will reach nearly $800 billion by 2030. Early Bird aims to capture a sliver of that market by addressing an expensive and potentially fatal problem. One-fifth of patients experience bleeding complications during large-bore endovascular procedures. Research shows these complications are associated with a greater risk of death, longer hospital stays, and higher healthcare costs.

The Early Bird device is meant to decrease those complications by quickly alerting medical professionals to signs of bleeding during endovascular procedures.

As explained by the Texas Heart Institute, the Early Bird employs a sheath — a plastic tube that helps keep arteries and vessels open — embedded with sensors that measure the electrical resistance across a blood vessel. When the Early Bird senses a change in the electrical resistance, medical professionals receive audible and visual notifications about potential internal bleeding. If detected early, this bleeding can be minimized.

Altogether, Saranas has raised $12 million from investors, including a $2.8 million round in May 2018. The company was founded in 2013.

"What attracted me to Saranas is that our solution has the potential to meaningfully reduce serious bleeding complications that worsen clinical outcomes and drive up healthcare costs," says Zaffer Syed, who joined the startup as president and CEO in 2017. "In addition, our device may support access of important minimally invasive cardiac procedures by allowing them to be performed more safely."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston-based HPE wins $931M contract to upgrade military data centers

defense data centers

Hewlett Packard Enterprise (HPE), based in Spring, Texas, which provides AI, cloud, and networking products and services, has received a $931 million contract to modernize data centers run by the federal Defense Information Systems Agency.

HPE says it will supply distributed hybrid multicloud technology to the federal agency, which provides combat support for U.S. troops. The project will feature HPE’s Private Cloud Enterprise and GreenLake offerings. It will allow DISA to scale and accelerate communications, improve AI and data analytics, boost IT efficiencies, reduce costs and more, according to a news release from HPE.

The contract comes after the completion of HPE’s test of distributed hybrid multicloud technology at Defense Information Systems Agency (DISA) data centers in Mechanicsburg, Pennsylvania, and Ogden, Utah. This technology is aimed at managing DISA’s IT infrastructure and resources across public and private clouds through one hybrid multicloud platform, according to Data Center Dynamics.

Fidelma Russo, executive vice president and general manager of hybrid cloud at HPE, said in a news release that the project will enable DISA to “deliver innovative, future-ready managed services to the agencies it supports that are operating across the globe.”

The platform being developed for DISA “is designed to mirror the look and feel of a public cloud, replicating many of the key features” offered by cloud computing businesses such as Amazon Web Services (AWS), Microsoft Azure and Google Cloud Platform, according to The Register.

In the 1990s, DISA consolidated 194 data centers into 16. According to The Register, these are the U.S. military’s most sensitive data centers.

More recently, in 2024, the Fort Meade, Maryland-based agency laid out a five-year strategy to “simplify the network globally with large-scale adoption of command IT environments,” according to Data Center Dynamics.

Astros and Rockets launch new streaming service for Houston sports fans

Sports Talk

Houston sports fans now have a way to watch their favorite teams without a cable or satellite subscription. Launched December 3, the Space City Home Network’s SCHN+ service allows consumers to watch the Houston Astros and Houston Rockets via iOS, Apple TV, Android, Amazon Fire TV, or web browser.

A subscription to SCHN+ allows sports fans to watch all Astros and Rockets games, as well as behind-the-scenes features and other on-demand content. It’s priced at $19.99 per month or $199.99 annually (plus tax). People who watch Space City Network Network via their existing cable or satellite service will be able to access SCHN+ at no additional charge.

As the Houston Chronicle notes, the Astros and Rockets were the only MLB and NBA teams not to offer a direct-to-consumer streaming option.

“We’re thrilled to offer another great option to ensure fans have access to watch games, and the SCHN+ streaming app makes it easier than ever to cheer on the Rockets,” Rockets alternate governor Patrick Fertitta said in a statement.

“Providing fans with a convenient way to watch their favorite teams, along with our network’s award-winning programming, was an essential addition. This season feels special, and we’re committed to exploring new ways to elevate our broadcasts for Rockets fans to enjoy.”

Astros owner Jim Crane echoed Feritta’s comments, adding, “Providing fans options on how they view our games is important as we continue to grow the game – we want to make it accessible to as large an audience as possible. We are looking forward to the 2026 season and more Astros fans watching our players compete for another championship.”

SCHN+ is available to customers in Texas; Louisiana; Arkansas; Oklahoma; and the following counties in New Mexico: Dona Ana, Eddy, Lea, Chaves, Roosevelt, Curry, Quay, Union, and Debaca. Fans outside these areas will need to subscribe to the NBA and MLB out-of-market services.

---

This article originally appeared on CultureMap.com.

Rice University researchers unveil new model that could sharpen MRI scans

MRI innovation

Researchers at Rice University, in collaboration with Oak Ridge National Laboratory, have developed a new model that could lead to sharper imaging and safer diagnostics using magnetic resonance imaging, or MRI.

In a study recently published in The Journal of Chemical Physics, the team of researchers showed how they used the Fokker-Planck equation to better understand how water molecules respond to contrast agents in a process known as “relaxation.” Previous models only approximated how water molecules relaxed around contrasting agents. However, through this new model, known as the NMR eigenmodes framework, the research team has uncovered the “full physical equations” to explain the process.

“The concept is similar to how a musical chord consists of many notes,” Thiago Pinheiro, the study’s first author, a Rice doctoral graduate in chemical and biomolecular engineering and postdoctoral researcher in the chemical sciences division at Oak Ridge National Laboratory, said in a news release. “Previous models only captured one or two notes, while ours picks up the full harmony.”

According to Rice, the findings could lead to the development and application of new contrast agents for clearer MRIs in medicine and materials science. Beyond MRIs, the NMR relaxation method could also be applied to other areas like battery design and subsurface fluid flow.

“In the present paper, we developed a comprehensive theory to interpret those previous molecular dynamics simulations and experimental findings,” Dilipkumar Asthagiri, a senior computational biomedical scientist in the National Center for Computational Sciences at Oak Ridge National Laboratory, said in the release. ”The theory, however, is general and can be used to understand NMR relaxation in liquids broadly.”

The team has also made its code available as open source to encourage its adoption and further development by the broader scientific community.

“By better modeling the physics of nuclear magnetic resonance relaxation in liquids, we gain a tool that doesn’t just predict but also explains the phenomenon,” Walter Chapman, a professor of chemical and biomolecular engineering at Rice, added in the release. “That is crucial when lives and technologies depend on accurate scientific understanding.”

The study was backed by The Ken Kennedy Institute, Rice Creative Ventures Fund, Robert A. Welch Foundation and Oak Ridge Leadership Computing Facility at Oak Ridge National Laboratory.