Houston medical device startup names new CEO

now at the helm

Houston-based Saranas has tapped a new leader amidst push to commercialize bleed detection technology. Photo via LinkedIn

Houston-based medical device company Saranas has tapped a veteran of the healthcare industry as its new CEO.

Mike MacKinnon most recently was president and partner at Madison Ventures +, a private equity firm based in Greenwood Village, Colorado. The firm invests in companies in healthcare, real estate, finance, and other sectors.

Before joining Madison Ventures +, MacKinnon was CEO of Zidan Medical, a startup focused on treatment of airway lesions in patients with early stage lung cancer. He served in that role from 2019 to 2023.

Earlier, he was CEO of ROX Medical, a medical device company specializing in minimally invasive vascular therapy for patients with uncontrolled high blood pressure. He held that role from 2018 to 2019. He previously worked at Philips North America, Volcano, AtheroMed, Hansen Medical, Access Closure, and FoxHollow Technologies.

In a news release, Dan Wolterman, chairman of Saranas’ board and former president and CEO of Memorial Hermann Health System, calls MacKinnon “an accomplished executive with an impressive record of bringing disruptive technology to market, guiding strategy, and driving significant growth.”

Now president and CEO of Nashua, New Hampshire-based medical device company Conformal Medical, James Reinstein was president and CEO of Saranas from 2020 to 2022. Prior to Reinstein, Zaffer Syed held that position from 2017 to 2020. He's still an adviser for the company and recently announced his role as entrepreneur in residence at the Texas Medical Center.

Saranas is working on commercializing its Early Bird Bleed Monitoring System, touted as the first and only system FDA-approved bleeding detection system for procedures involving blood vessels. It is designed to detect bleeds early, enabling physicians to reduce medical risks and potentially avoid costly medical problems.

“Bleeding remains a common issue during and after endovascular procedures and can result in life-threatening complications,” says MacKinnon.

Since being founded in 2013, Saranas has treated over 1,200 patients with its device and has received $29.2 million in funding, according to Crunchbase. This includes a $12.8 million Series B round that Saranas got in 2021 from Chicago-based Baird Capital and Austin-based S3 Ventures.

The Early Bird device was developed at Houston’s Texas Heart Institute. The FDA approved the device in 2019.

James Reinstein joins the Houston Innovators Podcast to discuss what's next for growing medical device company, Saranas. Photo courtesy

Health tech executive leads Houston startup into its next generation following $12.8M series B

houston innovators podcast episode 103

When James Reinstein took the helm of Houston-based Saranas in March 2020, he was tasked with taking the medical device company through its series B funding round and into larger clinical trials. Navigating these tasks during a global pandemic wasn't part of the plan.

"There was just so much uncertainty," Reinstein says on this week's episode of the Houston Innovators Podcast. "All of the funds didn't know which end was up, what hospitals would be doing, what procedures were going to begin again."

Saranas received FDA approval and began its clinical trials for its Early Bird Bleed Monitoring System in 2019. The device is designed to detect and track bleeding complications related to endovascular procedures. These medical procedures treat problems, such as aneurysms, that affect blood vessels. Around 20 percent of patients suffer a bleeding complication during endovascular procedures.

Reinstein explains that the way health tech funding trended over the past 18 months greatly affected Saranas. The device fell outside the parameters of what investors were looking for during this pandemic time. However, Reinstein explains, the Early Bird worked and had FDA approval — that made all the difference.

"We are very confident that the product does work and it can have a significant impact for hospitals and patients," Reinstein says. "Eventually, the term sheets came in."

Saranas announced in July that it closed a $12.8 million series B investment led by Wisconsin-based Baird Capital, the venture capital and global private equity arm of Baird, a global company with a location in Houston. Austin-based S3 Ventures also supported the round.

The funds will propel Saranas into its next phase, which includes growing its team, larger trials, and a next-generation product.

Reinstein has had decades in health care innovation all over the world, with a large chunk of his career at Boston Scientific. He's seen Houston's innovation ecosystem evolve.

"I do think that there's a great potential for Houston to really develop the industry," Reinstein says. "There's just two areas that need to get fortified. One is the funding and getting the funds directed to Houston companies — with the idea that the company stays in Houston. ... The other side of the coin is really finding the talent to come in and run the companies, take on leadership positions."

Reinstein shares more details on what's next for Saranas, as well as his advice for med tech entrepreneurs and observations on Houston's innovation ecosystem on the show. Listen to the full interview below — or wherever you stream your podcasts — and subscribe for weekly episodes.


The results are in for Houston-based Saranas' clinical trials. Courtesy of Saranas

Houston early bleeding detection device company reveals results of its clinical trials

blood tests

A Houston-based startup is closer to taking flight with a medical device designed to catch bleeding complications during medical procedures that involve blood vessels.

On May 22, researchers presented the results of a study showing the Early Bird Bleed Monitoring System from Houston-based Saranas Inc. detected various levels of bleeding in 63 percent of the patients who underwent endovascular procedures. These procedures treat problems, such as aortic aneurysms, that affect blood vessels.

No troubles were reported with the Early Bird device during the clinical trial, the researchers say.

Before this study, the Early Bird device hadn't been tested in humans. In all, 60 patients in five states participated in the clinical trial, which ran from August to December last year. Findings of the study were unveiled at the Society for Cardiovascular Angiography Interventions 2019 Scientific Sessions in Las Vegas.

The study's authors say they plan to continue evaluating the device at medical institutions that want to better manage bleeding during endovascular procedures.

"This is the first time we're seeing how this device could help in a real-world patient setting, and we were very encouraged by the results. Right now, patients have a risk of vessel injury when undergoing endovascular procedures where the femoral artery or vein is used for vascular access," Dr. Philippe Genereux, principal investigator for the study and a cardiologist at Morristown Medical Center in Morristown, New Jersey, says in a news release.

"This technology allows us to detect bleeding in real-time," Genereux adds, "which means we can take action quickly and improve the outcomes of the procedure and recovery for the patient."

In March, the Early Bird device — invented at Houston's Texas Heart Institute — received the U.S. Food and Drug Administration's approval as a "novel" medical device.

Saranas says Early Bird is the first and only device of its type. The FDA approval and the promising results of the clinical trial pave the way for the eventual launch of the device into the healthcare market.

A forecast from professional services firm KPMG predicts the global market for medical devices will reach nearly $800 billion by 2030. Early Bird aims to capture a sliver of that market by addressing an expensive and potentially fatal problem. One-fifth of patients experience bleeding complications during large-bore endovascular procedures. Research shows these complications are associated with a greater risk of death, longer hospital stays, and higher healthcare costs.

The Early Bird device is meant to decrease those complications by quickly alerting medical professionals to signs of bleeding during endovascular procedures.

As explained by the Texas Heart Institute, the Early Bird employs a sheath — a plastic tube that helps keep arteries and vessels open — embedded with sensors that measure the electrical resistance across a blood vessel. When the Early Bird senses a change in the electrical resistance, medical professionals receive audible and visual notifications about potential internal bleeding. If detected early, this bleeding can be minimized.

Altogether, Saranas has raised $12 million from investors, including a $2.8 million round in May 2018. The company was founded in 2013.

"What attracted me to Saranas is that our solution has the potential to meaningfully reduce serious bleeding complications that worsen clinical outcomes and drive up healthcare costs," says Zaffer Syed, who joined the startup as president and CEO in 2017. "In addition, our device may support access of important minimally invasive cardiac procedures by allowing them to be performed more safely."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Texas cybersecurity co. expands unique train-to-hire model to Houston

job search

It’s increasingly more difficult to ensure the confidentiality, integrity, and availability of proprietary data and information in the ever-changing, ever-evolving digital world.

Cyberattacks, including malware, phishing, and ransomware, are becoming increasingly common and sophisticated, posing a consistent threat to a company’s sustainability and bottom line.

To combat that trend, Nukudo, a San Antonio-based cybersecurity workforce development company, is expanding its initiative to bridge the global cybersecurity talent gap through immersive training and job placement to Houston.

“We saw that there was a need in the market because there's a shortage of skilled manpower within the cybersecurity industry and other digital domains,” says Dean Gefen, CEO of NukuDo. “So, our initial goal was to take a large pool of people and then make them to be fully operational in cybersecurity in the shortest amount of time.”

The company refers to the plan as the “training-to-employment model,” which focuses on providing structured training to select individuals who then acquire the skills and knowledge necessary to secure and maintain fruitful careers.

The company identifies potential associates through its proprietary aptitude test, which recognizes individuals who possess the innate technical acumen and potential for success in various cybersecurity roles, regardless of their level of education.

“We take in people from all walks of life, meaning the program is purely based on the associate’s potential,” Gefen says. “We have people who were previously aircraft engineers, teachers, graphic designers, lawyers, insurance agents and so forth.”

Once selected, associates are trained by cybersecurity experts while gaining hands-on experience through scenario-based learning, enabling them to be deployed immediately as fully operational cybersecurity professionals.

The program training lasts just six months—all paid—followed by three years of guaranteed employment with NukuDo.

While in training, associates are paid $ 4,000 per month; then, they’re compensated by nearly double that amount over the next three years, ultimately pushing their salaries to well into the six figures after completing the entire commitment.

In addition to fostering a diverse talent pipeline in the cybersecurity field, NukuDo is creating a comprehensive solution to address the growing shortage of technical talent in the global workforce.

And arming people with new marketable skills has a litany of benefits, both professional and personal, Gefen says.

“Sometimes, we have associates who go on to make five times their previous salary,” says Gefen. “Add to that fact that we had someone that had a very difficult life beforehand and we were able to put him on a different path. That really hits home for us that we are making a difference.

Nulkudo currently has partnerships with companies such as Accenture Singapore and Singapore Airlines. Gefen says he and his team plans to have a new class of associates begin training every month by next year and take the model to the Texas Triangle (Houston, Austin and Dallas)—then possibly nationwide.

“The great thing about our program is that we train people above the level of possible threat of replacement by artificial intelligence,” Gefen says. “But what we are also doing, and this is due to requirements that we have received from clients that are already hiring our cyber professionals, is that we are now starting to deliver AI engineers and data scientists in other domains.”

“That means that we have added more programs to our cybersecurity program. So, we're also training people in data science and machine learning,” he continues.

All interested candidates for the program should be aware that a college degree is not required. NukuDo is genuinely interested in talented individuals, regardless of their background.

“The minimum that we are asking for is high school graduates,” Gefen says. “They don't need to have a college degree; they just need to have aptitude. And, of course, they need to be hungry to make this change.”

2 Houston universities declared among world’s best in 2026 rankings

Declaring the Best

Two Houston universities are in a class of their own, earning top spots on a new global ranking of the world's best universities.

Rice University and University of Houston are among the top 1,200 schools included in the QS World University Rankings 2026. Ten more schools across Texas make the list.

QS (Quacquarelli Symonds), a London-based provider of higher education data and analytics, compiles the prestigious list each year; the 2026 edition includes more than 1,500 universities from around the world. Factors used to rank the schools include academic reputation; employer reputation; faculty-student ratio; faculty research; and international research, students, and faculty.

In Texas, University of Texas at Austin lands at No. 1 in the state, No. 20 in the U.S., and No. 68 globally.

Houston's Rice University is close behind as Texas' No. 2 school. It ranks 29th in the U.S. and No. 119 in the world. Unlike UT, which fell two spots globally this year (from No. 66 to 68), Rice climbed up the charts, moving from 141st last year to No. 119.

University of Houston impresses as Texas' 4th highest-ranked school. It lands at No. 80 in the U.S. and No. 556 globally, also climbing about 100 spots up the chart.

Rice and UH are on a roll in regional, national, and international rankings this year.

Rice earned top-15 national rankings by both Niche.com and Forbes last fall. Rice claimed No. 1 and UH ranked No. 8 in Texas in U.S. News & World Report's 2025 rankings. Rice also topped WalletHub's 2025 list of the best colleges and universities in Texas for 2025.

More recently, in April, both UH and Rice made U.S. News' 2025 list of top grad schools.

In all, 192 U.S. universities made the 2026 QS World University Rankings — the most of any country. Topping the global list is the Massachusetts Institute of Technology (MIT).

“The results show that while U.S. higher education remains the global leader, its dominance is increasingly challenged by fast-rising emerging systems,” says the QS World University Rankings report. “A decade ago, 32 American universities [were] featured in the world’s top 100; today, that number has dropped to 26, and only 11 of these institutions have improved their position this year."

The 12 Texas universities that appear in the QS World University Rankings 2026 list are:

  • University of Texas at Austin, No. 20 in the U.S. and No. 68 in the world (down from No. 66 last year).
  • Rice University, No. 29 in the U.S. and No. 119 in the world (up from No. 141 last year).
  • Texas A&M University, No. 32 in the U.S. and No. 144 in the world (up from No. 154 last year).
  • University of Houston, No. 80 in the U.S. and No. 556 in the world (up from 651-660 last year).
  • University of Texas at Dallas, No. 85 in the U.S. and No. 597 in the world (down from 596 last year).
  • Texas Tech University, No. 104 in the U.S. and No. 731-740 in the world (unchanged from last year).
  • University of North Texas, No. 123 in the U.S. and No. 901-950 in the world (up from 1,001-1,200 last year)
  • Baylor University, tied for No. 136 in the U.S. and at No. 1,001-1,200 in the world (unchanged from last year).
  • Southern Methodist University, tied for No. 136 in the U.S. and at 1,001-1,200 in the world (unchanged from last year).
  • University of Texas Arlington, tied for No. 136 in the U.S. and at 1,001-1,200 in the world (unchanged from last year).
  • University of Texas at San Antonio, tied for No. 136 in the U.S. and at 1,001-1,200 in the world (unchanged from last year).
  • University of Texas at El Paso, No. 172 in the U.S. and at 1,201-1,400 in the world (down from 1,001-1,200 last year).
---

This article originally appeared on CultureMap.com.

Houston students develop new device to prepare astronauts for outer space

space race

Rice University students from the George R. Brown School of Engineering and Computing designed a space exercise harness that is comfortable, responsive, and adaptable and has the potential to assist with complex and demanding spacewalks.

A group of students—Emily Yao, Nikhil Ashri, Jose Noriega, Ben Bridges and graduate student Jack Kalicak—mentored by assistant professor of mechanical engineering Vanessa Sanchez, modernized harnesses that astronauts use to perform rigorous exercises. The harnesses are particularly important in preparing astronauts for a reduced-gravity space environment, where human muscles and bones atrophy faster than they do on Earth. However, traditional versions of the harnesses had many limitations that included chafing and bruising.

The new harnesses include sensors for astronauts to customize their workouts by using real-time data and feedback. An additional two sensors measure astronauts’ comfort and exercise performance based on temperature and humidity changes during exercise and load distribution at common pressure points.

“Our student-led team addressed this issue by adding pneumatic padding that offers a customized fit, distributes pressure over a large surface area to reduce discomfort or injuries and also seamlessly adapts to load shifts — all of which together improved astronauts’ performance,” Sanchez said in a news release. “It was very fulfilling to watch these young engineers work together to find innovative and tangible solutions to real-world problems … This innovative adjustable exercise harness transforms how astronauts exercise in space and will significantly improve their health and safety during spaceflights.”

The project was developed in response to a challenge posted by the HumanWorks Lab and Life Science Labs at NASA and NASA Johnson Space Center for the 2025 Technology Collaboration Center’s (TCC) Wearables Workshop and University Challenge, where teams worked to solve problems for industry leaders.

Rice’s adaptive harness won the Best Challenge Response Award. It was funded by the National Science Foundation and Rice’s Office of Undergraduate Research and Inquiry.

“This challenge gave us the freedom to innovate and explore possibilities beyond the current harness technology,” Yao added in the release. “I’m especially proud of how our team worked together to build a working prototype that not only has real-world impact but also provides a foundation that NASA and space companies can build and iterate upon.”