Pothik Chatterjee was named executive director of Rice University's and Houston Methodist's Digital Health Institute, effective May 1. Photo courtesy Rice University.

Though our existences have become deeply entangled with technology, our health has been slower to catch up. The creation late last year of the Digital Health Institute was a major step into the future for both Rice University and Houston Methodist, for whom the institute is a joint venture.

The latest news for the Digital Health Institute is the appointment of Pothik Chatterjee to the role of executive director.

“The Digital Health Institute’s collaborative model is uniquely powerful,” Chatterjee told Rice University’s office of media relations. “By bringing together clinicians, engineers and entrepreneurs, we’re building an ecosystem designed to transform how care is delivered and experienced.”

Chatterjee’s role is to help grow the collaboration between the institutions, but the Digital Health Institute already boasts more than 20 active projects, each of which pairs Rice faculty and Houston Methodist clinicians.

“Research is great, but what we really want at the Digital Health Institute is to translate those research findings into products and services that can be used at the patient's bedside,” Chatterjee explained to InnovationMap.

Once the research is in place, it’s up to Chatterjee to find commercial opportunities within the research portfolio. Those include everything from hospital-grade medical imaging wearables to the creation of digital twins for patients to help better treat them.

“As we move from vision to execution, Pothik’s expertise will be essential in helping us strengthen the institutional alignment needed to deliver at scale,” Dr. Khurram Nasir, Houston Methodist’s William A. Zoghbi Centennial Chair in Cardiovascular Medicine and division chief of cardiovascular prevention and wellness, told Rice. “From my vantage point of a health system, the real value lies not just in innovation, but in implementation.”

Nasir’s co-founder is Ashutosh Sabharwal, Rice’s Ernest Dell Butcher Professor of Engineering and professor of electrical and computer engineering.

“The Digital Health Institute is a key step toward advancing health and health care for the benefit of humanity,” Sabharwal said. “We’re thrilled to welcome Pothik to our growing team. His background in health care innovation, research administration and venture investing will be instrumental in translating cutting-edge research into impactful digital health solutions. From leading innovation strategy and forging strong partnerships to driving fundraising and grant development, his leadership will help shape the institute’s long-term success.”

Though Chatterjee has previously worked around the country, including in Boston and Baltimore, he says he believes Houston is uniquely positioned to thrive in the digital health space.

“Houston is the best place to do it, because we have Rice and Houston Methodist,” he told InnovationMap. “[People] want to help keep that innovation in Houston, not just send it off to Silicon Valley or New York or Boston. There seems to be a lot of appetite from the philanthropic community to have homegrown Houston digital health innovation.”

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Eli Lilly to build $6.5B pharmaceutical factory at Generation Park

coming soon

Pharmaceutical giant Eli Lilly and Co. plans to build a $6.5 billion manufacturing plant at Houston’s Generation Park. More than 300 locations in the U.S. competed for the factory.

The Houston site will be the first major pharmaceutical manufacturing plant in Texas, according to the Greater Houston Partnership.

Lilly said it plans to hire 615 full-time workers for the 236-acre plant, including engineers, scientists and lab technicians. The company will collaborate with local colleges and universities to help build its talent pipeline.

The plant will also generate an estimated 4,000 construction jobs.

Lilly said every dollar it spends in the Houston area will contribute an additional $4 to the local economy.

“This is a transformative moment for the Houston region and our life sciences industry,” Steve Kean, president and CEO of the Greater Houston Partnership, said in a release. “The Lilly project represents one of the largest for-profit life sciences investments in Texas history and is a powerful endorsement of Houston’s growing position as a global hub for innovation, advanced manufacturing, and biomedical excellence.”

The factory, expected to go online by 2030, will make small-molecule medicines for fields such as oncology, immunology and neuroscience. Perhaps most notably, the site will manufacture orforglipron, Lilly's first oral small-molecule GLP-1 medicine for treatment of obesity and type 2 diabetes. The drug is currently undergoing clinical trials.

“Our new Houston site will enhance Lilly’s ability to manufacture orforglipron at scale and, if approved, help fulfill the medicine’s potential as a metabolic health treatment for tens of millions of people worldwide who prefer the ease of a pill that can be taken without food and water restrictions,” David Ricks, chairman and CEO of Lilly, said in a release.

The company said it chose Generation Park, a 4,300-acre, master-planned commercial district near Lake Houston, because of factors such as financial incentives, access to utilities and transportation, and the region’s business-friendly environment. Generation Park is home to campuses for San Jacinto College and Lone Star College.

The plant will be outfitted with machine learning, AI, advanced data analytics, digital automation, and similar tools to streamline operations, Lilly said.

Houston engineering firm lands $400M NASA contract

space deal

NASA has granted Houston-based Bastion Technologies Inc. the Safety and Mission Assurance II (SMAS II) award with a maximum potential value of $400 million.

The award stipulates that the engineering and technical services company provide safety and mission services for the agency’s Marshall Space Flight Center in Huntsville, Alabama, according to a release from NASA.

In the deal, Bastion’s services include system safety, reliability, maintainability, software assurance, quality engineering, independent assessment, institutional safety and pressure systems. Bastion’s work will support research and development projects, hardware fabrication and testing, spaceflight and science missions, and other activities at NASA Marshall, Michoud Assembly Facility in New Orleans, Stennis Space Center in Bay St. Louis, Mississippi, NASA’s Kennedy Space Center in Florida and various other sites.

The first base period for the SMASS II award has already begun, with the option for a base ordering period of four years to extend services through March 2034.

Bastion has been a key player in NASA’s Artemis program, and was also awarded a contract to support occupational safety, health and mission assurance at NASA’s Ames Research Center in Silicon Valley in 2024. Also in 2024, Bastion was awarded the NASA Glenn Research Center (GRC) Environmental, Safety, Health, and Mission Assurance (ESHMA) contract.

Since 1998, Bastion has held over 350 contracts at almost every NASA center and most major aerospace industry partners.

Houston research team lands $1.2M grant for ovarian cancer research

cancer funding

A team from the University of Houston and MD Anderson Cancer Center is working to find early markers for ovarian cancer.

Backed by a $1.2 million Department of Defense grant, a team led by Tianfu Wu, associate professor of biomedical engineering at UH, is studying autoantibodies that target a tumor suppressor gene that's often mutated in cancers and serves as an early marker of ovarian cancer development.

According to UH, the majority of women with ovarian cancer (70 percent and 75 percent) are diagnosed once the cancer has already spread, with the chances of survival below 32 percent. Computational models estimate that detecting ovarian cancer earlier could reduce mortality by 10 percent to 30 percent.

Doctors generally screen for ovarian cancer by measuring the rising amount of a protein known as Cancer Antigen 125 (CA125). However, additional biomarkers are needed to improve sensitivity and to detect cancer cases that are missed by CA125 testing.

“Advancing early detection methodologies is essential to improving patient prognosis and survival outcomes,” Wu said in a news release. “The technological challenges in the early detection of ovarian cancer are multifaceted, primarily due to limited sensitivity of currently available biomarkers and the absence of highly accurate biomarkers that can detect the disease well before clinical diagnosis.”

Wu’s team developed a test that detects thousands of immune reactions simultaneously by searching for immune complexes in an effort to identify new autoantibodies. They found more than 100 significantly upregulated immune complexes in ovarian cancer patients compared to healthy patients.

The team will test 10 to 20 of the biomarker candidates to assess their performance in the early detection of ovarian cancer. They will use machine learning modeling to develop computer algorithms for data analysis and disease predictions as well.

Dr. Robert C. Bast at MD Anderson Cancer Center has pioneered the practice of early detection of ovarian cancer, and is Wu’s partner on a team. Ying Lin, associate professor of industrial and systems engineering at UH, and Dr. Zhen Lu from at UT MD Anderson Cancer Center are also working on the project.