Yaxin Wang leads the IDEA Lab at the Texas Heart Institute. Photo via texasheart.org

In 1969, Dr. Denton A. Cooley implanted the first total artificial heart in a living patient. Most Houstonians know Cooley’s name, but fewer can name his colleague, Dr. Domingo Liotta, who created the device. Liotta died last year at the age of 97, but his work continues at the Texas Heart Institute.

Meet Yaxin Wang, PhD. The research engineer leads the IDEA Lab at THI. IDEA stands for Innovative Device & Engineering Applications, an apt description of what Wang and her colleagues do. She’s currently focused intensely on projects that could radically change transplantation for patients in need of an artificial heart or new, healthy lungs.

Specifically, Wang is helping to develop a pediatric left ventricular assist device (NeoVAD) to mechanically pump that part of the heart in infants and small children born with heart defects.

“There aren’t a lot of options for very small kids,” explains Wang. “That’s why we’re working on an implantable LVAD for very young kids.”

In fact, as many as 14,000 children with congenital heart disease are hospitalized each year waiting for a new heart, but only around 500 pediatric transplants actually take place.

Essentially, once patients reach their teens, their chest cavities are large enough for an adult donor heart. But smaller children means smaller rib cages and fewer available hearts. For children born with heart disease, Wang’s LVAD could be a lifesaver. Because she has crafted minimally invasive devices that were developed for long-term use, patients could live far longer than before.

The project, funded by a $2.8 million NIH grant, has a big name attached. Dr. O.H. Frazier is a THI legend who claims to have performed 900 LVAD implantations, not to mention some 1,200 heart transplants. In April, the team published their initial findings regarding the success of and improvements in making rotary LVADs over the last half-century.

A different team, also led by Frazier and Wang, received a pair of grants this summer. That includes $2.8 million from the NIH and a total of $7.8 million from a DoD focused program and a THI sub-award. Their work will center on a novel centrifugal left-ventricular assist device intended for end-stage heart failure patients, a potentially safer alternative to a heart transplant.

But Wang isn’t solely focused on the heart. Working with Dr. Gabriel Loor, a cardiothoracic surgeon at Baylor College of Medicine, Wang is also responsible for a method of preserving the lungs for a longer stretch of time, which would allow for further transport, and in the more distant future, potential genetic modification before transplantation. Using animal models for the moment, “they can survive for several hours without any issues,” says Wang.

The pioneering researcher is well on her way to making a name for herself at the Texas Heart Institute and beyond. And soon, she’ll be saving countless lives.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Expert: How to best repurpose Houston’s infrastructure for a clean energy future

guest column

Houston, often dubbed the “Energy Capital of the World,” is at a pivotal moment in its history. Known for its vast oil and gas reserves, the city is now embracing a new role as a leader in the clean energy transition. This shift is not just about adopting new technologies but also about creatively repurposing existing infrastructure to support sustainable energy solutions.

Houston’s offshore oil wells, many of which are old or abandoned, present a significant opportunity for carbon capture. By repurposing these wells, we can sequester carbon dioxide, reducing greenhouse gas emissions and mitigating climate change. This approach not only utilizes existing infrastructure but also provides a cost-effective solution for carbon management. According to the Greater Houston Partnership, initiatives like these are crucial as Houston aims to lower its climate-changing greenhouse gas emissions. Exxon estimates that just their proposed CCS hub could capture and store 50 million metric tons of CO2 annually by 2030 and 100 million metric tons by 2040.

The proximity of abandoned offshore platforms to the coast makes them ideal candidates for renewable energy substations. These platforms can be transformed into hubs for wind, solar or tidal energy, facilitating the integration of renewable energy into the grid. This repurposing not only maximizes the use of existing structures but also minimizes environmental disruption.

Decommissioned pipelines, which are already in place, offer a ready-made solution for routing renewable energy cables. By using these existing rights of way, Houston can avoid disturbing additional seafloor and reduce the environmental impact of new cable installations. This strategy ensures a smoother transition to renewable energy infrastructure. The U.S. Energy Information Administration notes that Texas, including Houston, leads the nation in wind-generated electricity, highlighting the potential for further renewable energy development.

Onshore oil and gas facilities in Houston also hold potential for clean energy repurposing. Wells that were drilled but never used for oil or gas can be adapted for geological thermal energy storage. This process involves storing excess renewable energy in the form of heat, which can be retrieved when needed, providing a reliable and sustainable energy source. This innovative use of existing wells aligns with Houston’s broader energy transition strategy, which aims to leverage the city’s industrial expertise for a low-carbon future.

Once the land has been remediated, old and abandoned oil fields can be converted into solar farms. This transformation not only provides a new use for previously contaminated land but also contributes to the generation of clean, renewable energy. Solar farms on these sites can help meet Houston’s energy needs while supporting environmental restoration. The Environmental Protection Agency in recent years recognized Houston as the top city in the U.S. for green energy usage, with annual green power usage topping 1 billion kilowatt-hours in 2021.

Houston’s journey towards a clean energy future is a testament to the power of innovation and adaptability. By repurposing existing infrastructure, we can create a sustainable energy landscape that honors the city’s industrial past while paving the way for a greener tomorrow. These strategies highlight the potential for Houston to lead in the clean energy transition, setting an example for cities worldwide.

———

Tershara Mathews is the national offshore wind lead at WSP.

This article originally ran on EnergyCapital.


Where to work: These 2024 Houston Innovation Awards finalists are hiring

growing biz

About a third of this year's startup finalists for the Houston Innovation Awards are hiring — from contract positions all the way up to senior-level roles.

The finalists, announced last week, range from the medical to energy to AI-related startups and will be celebrated next month on Thursday, November 14, at the Houston Innovation Awards at TMC Helix Park. Over 50 finalists will be recognized for their achievements across 13 categories, which includes the 2024 Trailblazer Legacy Awards that were announced earlier this month.

Click here to secure your tickets to see which growing startups win.

Let's take a look at where you could land a job at one of Houston's top startups.

Double-digit growth

When submitting their applications for the 2024 Houston Innovation Awards, every startup was asked if it was hiring. Four Houston startups replied that they are growing their teams rapidly.

Houston e-commerce startup Cart.com, one of the city's few $1 billion-plus “unicorns," reported that it is hiring approximately 50 new employees. The company, which focuses on commerce and logistics software development, secured $105 million in debt refinancing from investment manager BlackRock this summer following a $25 million series C extension round that brought Cart.com’s Series C total to $85 million. It currently has about 1,500 employees and 4 offices in three companies since it was founded in 2020, according to its website.

Houston energy tech company Enovate Ai (previously known as Enovate Upstream) reported that it is hiring 10-plus positions. The company, with 35 current employees, helps automate business and operational processes for decarbonization and energy optimization. Its CEO and founder, Camilo Mejia, sat down for an interview with InnovationMap in 2020. Click here to read the Q&A.

Square Robot is hiring about 10 new Houston employees and 15 total between Houston and other markets, according to its application. The advanced robotics company was founded in Boston in 2016 and opened its Houston office in August 2019. It develops submersible robots for the energy industry, specifically for storage tank inspections and eliminating the need for humans to enter dangerous and toxic environments. Last year it reported to be hiring 10 to 30 employees as well, ahead of the 2023 Houston Innovators Award. It currently has 25 Houston employees and about 50 nationally.

InnoVent Renewables LLC is also hiring 15 new employees to be based in Mexico. The company launched last year with its proprietary continuous pyrolysis technology that can convert waste tires, plastics, and biomass into fuels and chemicals. The company scaled up in 2022 and has operations in Pune, India, and Monterrey, Mexico, with plans for aggressive growth across North America and Latin America. It has 20 employees in Mexico and one in Houston currently.

Senior roles

Geothermal energy startup Sage Geosystems reported that it is looking to fill two senior roles in the company. It also said it anticipates further staff growth after its first commercial energy storage facility is commissioned at the end of the year in the San Antonio metro area. The company also recently expanded its partnership with the United States Department of Defense's Defense Innovation Unit and announced this month that it was selected to conduct geothermal project development initiatives at Naval Air Station in Corpus Christi. It has 12 full-time employees, according to its application.

Steady growth

Other companies reported that they are hiring a handful of new workers, which for some will increase headcount by about 50 percent to 100 percent.

Allterum Therapeutics reported that it is adding six employees to its current team of 13. The biopharmaceutical company that is under the Fannin Partners portfolio of med tech companies was awarded a $12 million product development grant from the Cancer Prevention and Research Institute of Texas this spring.

Dauntless XR will add between five and eight employees, according to its application. It currently has four employees. The augmented reality software company, originally founded as Future Sight AR in 2018, recently secured a NASA contract for space weather technology after rebranding and pivoting. The company's CEO, Lori-Lee Elliott, recently sat down with the Houston Innovators Podcast. Click here to hear the interview.

Syzygy Plasmonics is hiring four positions to add to its team of 120. The company was named to Fast Company's energy innovation list earlier this year.

Venus Aerospace is adding five to 10 key hires to its team of 72. Andrew Duggleby founded the company with his wife and CEO Sassie in 2020, before relocating to the Houston Spaceport in 2021. Last year, Venus raised a $20 million series A round, and it successfully ran the first long-duration engine test of their Rotating Detonation Rocket Engine in partnership with the Defense Advanced Research Projects Agency, or DARPA, earlier this year.

​Seeking selectively

Other finalists are adding to their teams with a handful of new hires of contract gigs.

​Future roles

Other finalists reported that they are currently not hiring, but had plans to in the near future.

NanoTech Materials Inc., which recently moved to a new facility, is not currently. Hiring but said it plans with new funding during its series B.

Renewable energy startup CLS Wind is not hiring at this time but reported that it plans to when the company closes funding in late 2024.

Houston-area researchers score $1.5M grant to develop storm response tech platform

fresh funding

Researchers from Rice University have secured a $1.5 million grant from the National Science Foundation to continue their work on improving safety and resiliency of coastal communities plagued by flooding and hazardous weather.

The Rice team of engineers and collaborators includes Jamie Padgett, Ben Hu, and Avantika Gori along with David Retchless at Texas A&M University at Galveston. The researchers are working in collaboration with the Severe Storm Prediction, Education and Evacuation from Disasters (SSPEED) Center and the Ken Kennedy Institute at Rice and A&M-Galveston’s Institute for a Disaster Resilient Texas.

Together, the team is developing and hopes to deploy “Open-Source Situational Awareness Framework for Equitable Multi-Hazard Impact Sensing using Responsible AI,” or OpenSafe.AI, a new platform that utilizes AI, data, and hazard and resilience models "to provide timely, reliable and equitable insights to emergency response organizations and communities before, during and after tropical cyclones and coastal storm events," reads a news release from Rice.

“Our goal with this project is to enable communities to better prepare for and navigate severe weather by providing better estimates of what is actually happening or might happen within the next hours or days,” Padgett, Rice’s Stanley C. Moore Professor in Engineering and chair of the Department of Civil and Environmental Engineering, says in the release. “OpenSafe.AI will take into account multiple hazards such as high-speed winds, storm surge and compound flooding and forecast their potential impact on the built environment such as transportation infrastructure performance or hazardous material spills triggered by severe storms.”

OpenSafe.AI platform will be developed to support decision makers before, during, and after a storm.

“By combining cutting-edge AI with a deep understanding of the needs of emergency responders, we aim to provide accurate, real-time information that will enable better decision-making in the face of disasters,” adds Hu, associate professor of computer science at Rice.

In the long term, OpenSafe.AI hopes to explore how the system can be applied to and scaled in other regions in need of equitable resilience to climate-driven hazards.

“Our goal is not only to develop a powerful tool for emergency response agencies along the coast but to ensure that all communities ⎯ especially the ones most vulnerable to storm-induced damage ⎯ can rely on this technology to better respond to and recover from the devastating effects of coastal storms,” adds Gori, assistant professor of civil and environmental engineering at Rice.

------

This article originally ran on EnergyCapital.