BrainLM is now well-trained enough to use to fine-tune a specific task and to ask questions in other studies. Photo via Getty Images

Houston researchers are part of a team that has created an AI model intended to understand how brain activity relates to behavior and illness.

Scientists from Baylor College of Medicine worked with peers from Yale University, University of Southern California and Idaho State University to make Brain Language Model, or BrainLM. Their research was published as a conference paper at ICLR 2024, a meeting of some of deep learning’s greatest minds.

“For a long time we’ve known that brain activity is related to a person’s behavior and to a lot of illnesses like seizures or Parkinson’s,” Dr. Chadi Abdallah, associate professor in the Menninger Department of Psychiatry and Behavioral Sciences at Baylor and co-corresponding author of the paper, says in a press release. “Functional brain imaging or functional MRIs allow us to look at brain activity throughout the brain, but we previously couldn’t fully capture the dynamic of these activities in time and space using traditional data analytical tools.

"More recently, people started using machine learning to capture the brain complexity and how it relates it to specific illnesses, but that turned out to require enrolling and fully examining thousands of patients with a particular behavior or illness, a very expensive process,” Abdallah continues.

Using 80,000 brain scans, the team was able to train their model to figure out how brain activities related to one another. Over time, this created the BrainLM brain activity foundational model. BrainLM is now well-trained enough to use to fine-tune a specific task and to ask questions in other studies.

Abdallah said that using BrainLM will cut costs significantly for scientists developing treatments for brain disorders. In clinical trials, it can cost “hundreds of millions of dollars,” he said, to enroll numerous patients and treat them over a significant time period. By using BrainLM, researchers can enroll half the subjects because the AI can select the individuals most likely to benefit.

The team found that BrainLM performed successfully in many different samples. That included predicting depression, anxiety and PTSD severity better than other machine learning tools that do not use generative AI.

“We found that BrainLM is performing very well. It is predicting brain activity in a new sample that was hidden from it during the training as well as doing well with data from new scanners and new population,” Abdallah says. “These impressive results were achieved with scans from 40,000 subjects. We are now working on considerably increasing the training dataset. The stronger the model we can build, the more we can do to assist with patient care, such as developing new treatment for mental illnesses or guiding neurosurgery for seizures or DBS.”

For those suffering from neurological and mental health disorders, BrainLM could be a key to unlocking treatments that will make a life-changing difference.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston startup debuts new drone for first responders

taking flight

Houston-based Paladin Drones has debuted Knighthawk 2.0, its new autonomous, first-responder drone.

The drone aims to strengthen emergency response and protect first responders, the company said in a news release.

“We’re excited to launch Knighthawk 2.0 to help build safer cities and give any city across the world less than a 70-second response time for any emergency,” said Divyaditya Shrivastava, CEO of Paladin.

The Knighthawk 2.0 is built on Paladin’s Drone as a First Responder (DFR) technology. It is equipped with an advanced thermal camera with long-range 5G/LTE connectivity that provides first responders with live, critical aerial awareness before crews reach the ground. The new drone is National Defense Authorization Act-compliant and integrates with Paladin's existing products, Watchtower and Paladin EXT.

Knighthawk 2.0 can log more than 40 minutes of flight time and is faster than its previous model, reaching a reported cruising speed of more than 70 kilometers per hour. It also features more advanced sensors, precision GPS and obstacle avoidance technology, which allows it to operate in a variety of terrains and emergency conditions.

Paladin also announced a partnership with Portuguese drone manufacturer Beyond Vision to integrate its Drone as a First Responder (DFR) technology with Beyond Vision’s NATO-compliant, fully autonomous unmanned aerial systems. Paladin has begun to deploy the Knighthawk 2.0 internationally, including in India and Portugal.

The company raised a $5.2 million seed round in 2024 and another round for an undisclosed amount earlier this year. In 2019, Houston’s Memorial Villages Police Department piloted Paladin’s technology.

According to the company, Paladin wants autonomous drones responding to every 911 call in the U.S. by 2027.

Rice research explores how shopping data could reshape credit scores

houston voices

More than a billion people worldwide can’t access credit cards or loans because they lack a traditional credit score. Without a formal borrowing history, banks often view them as unreliable and risky. To reach these borrowers, lenders have begun experimenting with alternative signals of financial reliability, such as consistent utility or mobile phone payments.

New research from Rice Business builds on that approach. Previous work by assistant professor of marketing Jung Youn Lee showed that everyday data like grocery store receipts can help expand access to credit and support upward mobility. Her latest study extends this insight, using broader consumer spending patterns to explore how alternative credit scores could be created for people with no credit history.

Forthcoming in the Journal of Marketing Research, the study finds that when lenders use data from daily purchases — at grocery, pharmacy, and home improvement stores — credit card approval rates rise. The findings give lenders a powerful new tool to connect the unbanked to credit, laying the foundation for long-term financial security and stronger local economies.

Turning Shopping Habits into Credit Data

To test the impact of retail transaction data on credit card approval rates, the researchers partnered with a Peruvian company that owns both retail businesses and a credit card issuer. In Peru, only 22% of people report borrowing money from a formal financial institution or using a mobile money account.

The team combined three sets of data: credit card applications from the company, loyalty card transactions, and individuals’ credit histories from Peru’s financial regulatory authority. The company’s point-of-sale data included the types of items purchased, how customers paid, and whether they bought sale items.

“The key takeaway is that we can create a new kind of credit score for people who lack traditional credit histories, using their retail shopping behavior to expand access to credit,” Lee says.

The final sample included 46,039 credit card applicants who had received a single credit decision, had no delinquent loans, and made at least one purchase between January 2021 and May 2022. Of these, 62% had a credit history and 38% did not.

Using this data, the researchers built an algorithm that generated credit scores based on retail purchases and predicted repayment behavior in the six months following the application. They then simulated credit card approval decisions.

Retail Scores Boost Approvals, Reduce Defaults

The researchers found that using retail purchase data to build credit scores for people without traditional credit histories significantly increased their chances of approval. Certain shopping behaviors — such as seeking out sale items — were linked to greater reliability as borrowers.

For lenders using a fixed credit score threshold, approval rates rose from 15.5% to 47.8%. Lenders basing decisions on a target loan default rate also saw approvals rise, from 15.6% to 31.3%.

“The key takeaway is that we can create a new kind of credit score for people who lack traditional credit histories, using their retail shopping behavior to expand access to credit,” Lee says. “This approach benefits unbanked applicants regardless of a lender’s specific goals — though the size of the benefit may vary.”

Applicants without credit histories who were approved using the retail-based credit score were also more likely to repay their loans, indicating genuine creditworthiness. Among first-time borrowers, the default rate dropped from 4.74% to 3.31% when lenders incorporated retail data into their decisions and kept approval rates constant.

For applicants with existing credit histories, the opposite was true: approval rates fell slightly, from 87.5% to 84.5%, as the new model more effectively screened out high-risk applicants.

Expanding Access, Managing Risk

The study offers clear takeaways for banks and credit card companies. Lenders who want to approve more applications without taking on too much risk can use parts of the researchers’ model to design their own credit scoring tools based on customers’ shopping habits.

Still, Lee says, the process must be transparent. Consumers should know how their spending data might be used and decide for themselves whether the potential benefits outweigh privacy concerns. That means lenders must clearly communicate how data is collected, stored, and protected—and ensure customers can opt in with informed consent.

Banks should also keep a close eye on first-time borrowers to make sure they’re using credit responsibly. “Proactive customer management is crucial,” Lee says. That might mean starting people off with lower credit limits and raising them gradually as they demonstrate good repayment behavior.

This approach can also discourage people from trying to “game the system” by changing their spending patterns temporarily to boost their retail-based credit score. Lenders can design their models to detect that kind of behavior, too.

The Future of Credit

One risk of using retail data is that lenders might unintentionally reject applicants who would have qualified under traditional criteria — say, because of one unusual purchase. Lee says banks can fine-tune their models to minimize those errors.

She also notes that the same approach could eventually be used for other types of loans, such as mortgages or auto loans. Combined with her earlier research showing that grocery purchase data can predict defaults, the findings strengthen the case that shopping behavior can reliably signal creditworthiness.

“If you tend to buy sale items, you’re more likely to be a good borrower. Or if you often buy healthy food, you’re probably more creditworthy,” Lee explains. “This idea can be applied broadly, but models should still be customized for different situations.”

---

This article originally appeared on Rice Business Wisdom. Written by Deborah Lynn Blumberg

Anderson, Lee, and Yang (2025). “Who Benefits from Alternative Data for Credit Scoring? Evidence from Peru,” Journal of Marketing Research.

XSpace adds 3 Houston partners to fuel national expansion

growth mode

Texas-based XSpace Group has brought onboard three partners from the Houston area to ramp up the company’s national expansion.

The new partners of XSpace, which sells high-end multi-use commercial condos, are KDW, Pyek Financial and Welcome Wilson Jr. Houston-based KDW is a design-build real estate developer, Katy-based Pyek offers fractional CFO services and Wilson is president and CEO of Welcome Group, a Houston real estate development firm.

“KDW has been shaping the commercial [real estate] landscape in Texas for years, and Pyek Financial brings deep expertise in scaling businesses and creating long‑term value,” says Byron Smith, founder of XSpace. “Their commitment to XSpace is a powerful endorsement of our model and momentum. With their resources, we’re accelerating our growth and building the foundation for nationwide expansion.”

The expansion effort will target high-growth markets, potentially including Nashville, Tennessee; Orlando, Florida; and Charlotte and Raleigh, North Carolina.

XSpace launched in Austin with a $20 million, 90,000-square-foot project featuring 106 condos. The company later added locations on Old Katy Road in Houston and at The Woodlands Town Center. A third Houston-area location is coming to the Design District.

XSpace condos range in size from 300 to 3,000 square feet. They can accommodate a variety of uses, such as a luxury-car storage space, a satellite office, or a podcasting studio.

“XSpace has tapped into a fundamental shift in how entrepreneurs and professionals want to use space,” Wilson says. “Houston is one of the best places in the country to innovate and build, and XSpace’s model is perfectly aligned with the needs of this fast‑growing, opportunity‑driven market.”