A new partnership on Earth will help navigate the future of space health. Photo via NASA

Houston's Translational Research Institute for Space Health, or TRISH, has entered into an agreement with the Korea National Institute of Health to collaborate on research and discovery relating to space health.

According to a release, the organizations aim to uncover health findings that can assist in NASA's upcoming Artemis missions, as well as have Earth-bound impacts. The agreement is a Memorandum of Understanding which states that both organizations will "develop fruitful areas of cooperation for space health."

TRISH — which is affiliated with Baylor College of Medicine — and KNIH plan to collaborate on research related to mental health issues due to space travel, the challenges of food supply in deep space, the negative effects of space radiation and en-suite medical care for long-duration space travel.

“As in space, there should be no borders or boundaries to scientific discovery that benefits humankind,” Dorit Donoviel, associate professor in the Center for Space Medicine at Baylor and executive director TRISH said in a statement. “With this agreement, we will work together with the KNIH to collaborate and foster meaningful discussion with the ambition of keeping humans healthy in space and on Earth.”

TRISH announced last month that it will launch six experiments into space aboard Axiom Space's Ax-2 mission in consortium with CalTeach and MIT, which was originally targeted to launch this month.

TRISH is also slated to launch nine experiments on board SpaceX's Polaris Dawn mission, which is now expected to launch in September.

Some of the information found from these missions will become part of TRISH’s Enhancing eXploration Platforms and ANalog Definition, or EXPAND, program, which aims to boost human health on commercial space flights through its database. The program launched in 2021.
Houston-based TRISH's research will be done aboard the Polaris Dawn by its crew, which includes, from left to right, Mission Specialist and Medical Officer Anna Menon, Mission Pilot Scott “Kidd” Poteet, Mission Commander Jared “Rook” Isaacman, Mission Specialist Sarah Gillis. Photo courtesy Polaris Program/John Kraus

Houston space health institute to send experiments on upcoming SpaceX mission

ready for takeoff

The Translational Research Institute for Space Health at Baylor College of Medicine, or TRISH, announced this month that it will perform research experiments aboard SpaceX's upcoming Polaris Dawn mission that will look into everything from human vision to motion sickness to radiation levels while in space.

The research aboard Polaris Dawn will complement research supported by TRISH on the Inspiration4 all-civilian mission to orbit, which was also operated by SpaceX in 2021.

“The Institute’s mission is to help humans thrive in deep space,” Dr. Dorit Donoviel, TRISH executive director and associate professor for the Center for Space Medicine at Baylor, said in a statement. “We are grateful to our commercial space exploration partners, and in particular, the Polaris Program, who recognize how important it is to carry out and support health research in their missions, as a route to improving health for all humans in space and on Earth.”

Polaris Dawn is slated to launch from NASA’s Kennedy Space Center in Florida no earlier than March 2023. It is part of SpaceX's Polaris Program, which proposes three space missions. The first mission aims to reach the highest Earth orbit ever flown.

Four crew members will be onboard SpaceX’s Falcon 9 rocket for the Polaris Dawn mission. TRISH's experiments are part of 38 experiments from institutions that will be conducted on board at high-altitude Earth orbit.

The experiments are supported by federal funding from TRISH's cooperative agreement with NASA, as well as a donation from the Polaris Program.

According to a statement from TRISH, the experiments will include the following:

  • Collecting data related to the vision condition Spaceflight Associated Neuro-Ocular Syndrome (SANS), which is a top risk to human health in long-duration spaceflight
  • Quantifying alterations in body composition and fluid distribution during exposure to weightlessness
  • Directly measuring intracranial pressure changes to quantify the effects of weightlessness on the brain
  • Measuring cognitive performance, which reflects fitness for duty
  • Collecting biometric data to track physiologic changes, which could inform on changes in overall health
  • Using miniaturized, intelligent ultrasound to train the astronauts to scan themselves and deliver medical quality images
  • Testing ways to predict space motion sickness to improve crew safety and in-mission performance
  • Collecting data on the radiation environment to observe how space radiation may affect human systems
  • Providing biological samples for multi-omics analyses and storage in a long-term biobank to be available to researchers in the future

TRISH launched the first-ever commercial spaceflight medical research program in 2021, known as the Expand—Enhancing Exploration Platforms and Analog Definition—Program. Future findings from the Polaris Dawn mission will be added to the database, which compiles in-flight health data from multiple spaceflights.

TRISH was founded in 2016 with the mission of addressing the most pressing health risks and challenges associated with human deep space exploration.

TRISH is seeking space health scientists to support with new initiative. Photo via BCM.edu

Houston organization launches new fellowship to support the future of space health

we have liftoff

A space health-focused organization has announced a new fellowship opportunity for scientists.

The Translational Research Institute for Space Health, or TRISH, housed out of Baylor College of Medicine has announced — along with partners California Institute of Technology and Massachusetts Institute of Technology — a new fellowship opportunity for postdoctoral scientists tackling the health challenges of deep space exploration and innovating solutions.

“TRISH is a launch pad for exceptional postdoctoral fellows investigating new ways to protect human health,” says Rachael Dempsey, education officer for TRISH, in a news release. “Space health science leads to innovations that help humans thrive, wherever they explore. Our institute is committed to building a diverse and engaged workforce prepared for humanity’s future in space.”

TRISH’s postdoctoral fellowship program will select fellows who will then participate in TRISH’s Academy of Bioastronautics — a mentorship community for space health professionals. The professionals will receive a two-year salary stipend as they conduct their work.

“America’s future is in space exploration, and it’s time to invest in the scientists that will bring forward ground-breaking advances to enable that exciting future,” says Dr. Dorit Donoviel, TRISH executive director, in the release.

Those interested can submit their proposals together with an identified mentor and institution online up until January 26, 2023. Independent investigators with existing research grant support may request to be listed as possible mentors for this program by contacting Jean De La Croix Ndong at jndong@nasaprs.com, per the news release.

Supported in part by NASA, Houston-based TRISH is focused on supporting scientists committed to creating space health treatments and solution for the future of space travel.

The human body undergoes specific challenges in space. A new film from TRISH explains the unique phenomenon and how research is helping to improve human life in space. Photo courtesy of NASA

Houston-based organization premieres space health tech documentary

watch now

A Houston space health organization has launched a film that is available to anyone interested in how space affects the human body.

The Translational Research Institute for Space Health, or TRISH, which is housed out of Baylor College of Medicine in consortium with Caltech and the Massachusetts Institute of Technology, announced a new documentary — “Space Health: Surviving in the Final Frontier.” The film, which covers how space affects humans both physically and mentally. It's free to watch online.

“This documentary provides an unprecedented look into the challenges – physical and mental – facing space explorers and the types of innovative research that TRISH supports to address these challenges,” says Dr. Dorit Donoviel, TRISH executive director and associate professor in Baylor’s Center for Space Medicine, in a news release. “We hope the film inspires students and researchers alike to see how their work could one day soon improve the lives of human explorers.”

The documentary interviews a wide range of experts — scientists, flight surgeons, astronauts, etc. — about all topics related to health, like food, medicine, radiation, isolation, and more. Some names you'll see on the screen include:

  • Former NASA astronaut Nicole Stott
  • Active NASA astronaut Victor Glover
  • NASA Associate Administrator Kathy Lueders
  • Inspiration4 Commander Jared Issacman
  • TRISH-funded researchers Level Ex CEO Sam Glassenberg and Holobiome CEO Philip Strandwitz

“Understanding and solving the challenges that face humans in space is critical work,” says Dr. Jennifer Fogarty, TRISH chief scientific officer, in the release. “Not only does space health research aim to unlock new realms of possibility for human space exploration, but it also furthers our ability to innovate on earth, providing insights for healthcare at home.”

TRISH is funded by NASA’s Human Research Program and seeks both early stage and translation-ready research and technology to protect and improve the health and performance of space explorers. This film was enabled by a collaboration with NASA and HRP.

This week's roundup of Houston innovators includes Dorit Donoviel of TRISH, Nuri Firat Ince of UH, and Vanessa Wade of Connect the Dots. Courtesy photos

3 Houston innovators to know this week

who's who

Editor's note: In this week's roundup of Houston innovators to know, I'm introducing you to three local innovators across industries — from space to engineering — recently making headlines in Houston innovation.


Dorit Donoviel, director of the Translational Research Institute for Space Health

Dorit Donoviel, director of the Translational Research Institute for Space Health

The new program will work with commercial spaceflight crews to bring back crucial research to one database. Photo via Libby Neder Photography

The Translational Research Institute for Space Health, or TRISH, at Baylor College of Medicine announced a unique program that will work with commercial spaceflight providers and their passengers. The EXPAND — Enhancing eXploration Platforms and Analog Definition — Program will collect information and data from multiple space flights and organize it in one place. TRISH selected TrialX to build the centralized database.

"The space environment causes rapid body changes. This can help us understand how we humans react to and overcome stress. Ensuring that space explorers remain healthy pushes us to invent new approaches for early detection and prevention of medical conditions," says Dorit Donoviel, executive director at TRISH, in the release.

"Studying a broad range of people in space increases our knowledge of human biology. TRISH's EXPAND program will leverage opportunities with commercial spaceflight providers and their willing crew to open up new research horizons." Click here to read more.

Nuri Firat Ince, associate professor of biomedical engineering at UH

A medical device designed by a UH professor will close the loop with high frequency brain waves to prevent seizures from occurring. Photo via uh.edu

Nuri Firat Ince, an associate professor of biomedical engineering at UH, has received a federal grant aimed at helping stop epileptic seizures before they start. The BRAIN Initiative at the National Institute of Neurological Disorders and Stroke awarded the $3.7 million grant to go toward Ince's work to create a seizure-halting device based on his research.

According to UH, Ince has reduced by weeks the time it takes to locate the seizure onset zone (SOZ), the part of the brain that causes seizures in patients with epilepsy. He's done this by detecting high-frequency oscillations (HFO) forming "repetitive waveform patterns" that identify their location in the SOZ.

"If the outcomes of our research in acute settings become successful, we will execute a clinical trial and run our methods with the implanted … system in a chronic ambulatory setting," Ince says. Click here to read more.

Vanessa Wade, founder and owner of Connect the Dots

It's time for large corporations to step up to support small businesses founded by people of color. Photo courtesy

In her guest column for InnovationMap, Vanessa Wade addressed some of the challenges she faced founding a company as a person of color — specifically the lack of access to funding. In the article, she calls corporations to action to help business leaders like herself.

"The journey ahead can feel discouraging, but the good news is that now I have a much better idea of what it will take to build an equitable road back and get businesses like mine on even footing," she writes. Click here to read more.

The new program will work with commercial spaceflight crews to bring back crucial research to one database. Photo via NASA/Unsplash

Houston organization launches the first commercial spaceflight medical research program

out of this world health care

With commercial space activity reaching cruising altitude, a Houston space health research organization has introduced a new program to create a centralized database.

The Translational Research Institute for Space Health, or TRISH, at Baylor College of Medicine announced a unique program that will work with commercial spaceflight providers and their passengers. The EXPAND — Enhancing eXploration Platforms and Analog Definition — Program will collect information and data from multiple space flights and organize it in one place. TRISH selected TrialX to build the centralized database.

As a partner to the NASA Human Research Program, the Houston-based organization's mission is to reduce health risks for astronauts and uncover advances for terrestrial healthcare, according to a news release.

"The space environment causes rapid body changes. This can help us understand how we humans react to and overcome stress. Ensuring that space explorers remain healthy pushes us to invent new approaches for early detection and prevention of medical conditions," says Dorit Donoviel, executive director at TRISH, in the release. "Studying a broad range of people in space increases our knowledge of human biology. TRISH's EXPAND program will leverage opportunities with commercial spaceflight providers and their willing crew to open up new research horizons."

The new collaborative program is meant to address the challenges that humans face on space missions — early detection and treatment of medical conditions, protection from radiation, mental health, team dynamics, and more. TRISH has been working on these challenges since its inception.

"This ground-breaking research model is only possible because everyone — scientists, commercial spaceflight companies, and passengers - recognizes the importance of space health research, and what we can learn by working together," says Dr. Emmanuel Urquieta, TRISH's chief medical officer, in the release.

EXPAND's first collaboration is the Inspiration4 mission, which is launching on September 15. The all-civilian crew will perform a variety of TRISH-supported human health experiments during their time in orbit.

"Shorter commercial space flights like Inspiration4 have similarities to early NASA Artemis missions," says Jimmy Wu, TRISH's senior biomedical engineer. "This allows TRISH an opportunity to test new health and performance technologies for future NASA astronauts."

The potential impact of innovation with this new centralized database and biobank is profound, says James Hury, TRISH's deputy director and chief innovation officer.

"The EXPAND database has the flexibility to seamlessly take in multiple types of data from different flight providers in order to create a repository that can integrate information," says Hury in the release. "A centralized, standardized research database and biobank will increase access to knowledge about human health for the global research community."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Texas-based energy startup raises $1 billion on heels of Houston expansion

Powering Up

Austin-based startup Base Power, which offers battery-supported energy in the Houston area and other regions, has raised $1 billion in series C funding—making it one of the largest venture capital deals this year in the U.S.

VC firm Addition led the $1 billion round. All of Base Power’s existing major investors also participated, including Trust Ventures, Valor Equity Partners, Thrive Capital, Lightspeed Venture Partners, Andreessen Horowitz (a16z), Altimeter, StepStone Group, 137 Ventures, Terrain, Waybury Capital, and entrepreneur Elad Gil. New investors include Ribbit Capital, Google-backed CapitalG, Spark Capital, Bond, Lowercarbon Capital, Avenir Growth Capital, Glade Brook Capital Partners, Positive Sum and 1789 Capital Management.

Coupled with the new $1 billion round, Base Power has hauled in more than $1.27 billion in funding since it was founded in 2023.

Base Power supplies power to homeowners and the electric grid through a distributed storage network.

“The chance to reinvent our power system comes once in a generation,” Zach Dell, co-founder and CEO of Base Power, said in a news release. “The challenge ahead requires the best engineers and operators to solve it, and we’re scaling the team to make our abundant energy future a reality.”

Zach Dell is the son of Austin billionaire and Houston native Michael Dell, chairman and CEO of Round Rock-based Dell Technologies.

In less than two years, Base Power has developed more than 100 megawatt-hours of battery-enabled storage capacity. One megawatt-hour represents one hour of energy use at a rate of one million watts.

Base Power recently expanded its service to the city of Houston. It already was delivering energy to several other communities in the Houston area. To serve the Houston region, the startup has opened an office in Katy.

The startup also serves the Dallas-Fort Worth and Austin markets. At some point, Base Power plans to launch a nationwide expansion.

To meet current and future demand, Base Power is building its first energy storage and power electronics factory at the former downtown Austin site of the Austin American-Statesman’s printing presses.

“We’re building domestic manufacturing capacity for fixing the grid,” Justin Lopas, co-founder and chief operating officer of Base Power, added in the release. “The only way to add capacity to the grid is [by] physically deploying hardware, and we need to make that here in the U.S. ... This factory in Austin is our first, and we’re already planning for our second.”

---

This article originally appeared on EnergyCapitalHTX.com.

Expert on Houston’s energy advantage: Building affordability, reliability for all

Guest Column

As the energy capital of the world, Houston has been at the forefront of innovation, powering industries and communities for generations. Many Houston families, however, are facing a reality that undermines our leadership: high energy bills and ongoing concerns about grid reliability.

Affordability and reliability are not just technical issues; they’re equity issues. To remain the world leader in energy, we must ensure that every household has access to affordable and dependable power.

Affordability: The First Step Toward Equity

According to the recent 2025 study by The Texas Energy Poverty Research Institute, nearly 80% of low- to moderate-income Houstonians scaled back on basic needs to cover electric bills. Rising costs mean some Houstonians are forced to choose between paying their utility bill or paying for groceries.

Additionally, Houston now has the highest poverty rate among America’s most populous cities. Energy should not be a privilege for only half of our city’s population. That’s why affordability needs to be at the center of Houston’s energy conversation.

Several practical solutions exist to help address this inequity:

  • We can increase transparency in electricity pricing and help families better understand their electricity facts labels to make smarter choices.
  • We can expand energy efficiency programs, like weatherizing homes and apartments, swapping out old light bulbs for LEDs, and adopting smart thermostats.
  • Incentives to help families invest in these changes can deliver long-term benefits for both them and apartment complex owners.

Many small changes, when combined, can add up to significant savings for families while reducing overall demand on the grid.

Reliability: A Shared Community Priority

The memories of Hurricane Beryl, Derecho, and Winter Storm Uri are still fresh in the minds of Texans. We saw firsthand the fragility of our grid and how devastating outages are to families, especially those without resources to handle extreme weather. Reliability of the grid is an issue of public health, economic stability, and community safety.

Houston has an opportunity to lead by embracing innovation. Grid modernization, from deploying microgrids to expanding battery storage, can provide stability when the system is under stress. Partnerships between utilities, businesses, and community organizations are key to building resilience. With Houston’s innovation ecosystem, we can pilot solutions here that other regions will look to replicate.

Energy Equity in Action

Reliable, affordable energy strengthens equity in tangible ways. When households spend less on utilities, they have more to invest in their children’s education or save for the future. When power is stable, schools remain open, businesses continue to operate, and communities thrive. Extending energy efficiency programs across all neighborhoods creates a fairer, more balanced system, breaking down inequities tied to income and geography.

Studies show that expanding urban green spaces such as community gardens and tree-planting programs can lower neighborhood temperatures, reduce energy use for cooling, and improve air quality in disadvantaged areas, directly reducing household utility burdens.

In Houston, for example, the median energy burden for low-income households is 7.1% of income, more than twice that of the general population, with over 20% of households having energy burdens above 6%.

Research also demonstrates that community solar programs and urban cooling investments deliver clean, affordable power, helping to mitigate heat stress and making them high-impact strategies for energy equity and climate resilience in vulnerable neighborhoods.

Public-Private Partnerships Make the Difference

The solutions to affordability and reliability challenges must come from cross-sector collaboration. For example, CenterPoint Energy offers incentives through its Residential and Hard-to-Reach Programs, which support contractors and community agencies in delivering energy efficiency upgrades, including weatherization, to low-income households in the greater Houston area.

Nonprofits like the Houston Advanced Research Center (HARC) received a $1.9 million Department of Energy grant to lead a weatherization program tailored for underserved communities in Harris County, helping to lower bills and improve housing safety

Meanwhile, the City of Houston’s Green Office Challenge and Better Buildings Initiative bring private-sector sponsors, nonprofits, and city leadership together to drive energy reductions across millions of square feet of commercial buildings, backed by training and financial incentives. Together, these partnerships can result in real impact that brings more equity and access to affordable energy.

BKV Energy is committed to being part of the solution by promoting practical, consumer-focused strategies that help families save money and use energy more efficiently. We offer a suite of programs designed to provide customers with financial benefits and alleviate the burden of rising electricity bills. Programs like BKV Energy’s demonstrate how utilities can ease financial strain for families while building stronger customer loyalty and trust. Expanding similar initiatives across Houston would not only lower household energy burdens but also set a new standard for how energy companies can invest directly in their communities.

By proactively addressing affordability, energy companies can help ensure that rising costs don’t disproportionately impact vulnerable households. These efforts also contribute to a more resilient and equitable energy future for Houston, where all residents can access reliable power without sacrificing financial stability.

Houston as a Blueprint

Houston has always been a city of leadership and innovation, whether pioneering the space race, driving advancements in medical research at the Texas Medical Center, or anchoring the global energy industry. Today, our challenge is just as urgent: affordability and reliability must become the cornerstones of our energy future. Houston has the expertise and the collaborative spirit to show how it can be done.

By scaling innovative solutions, Houston can make energy more equitable, strengthening our own community while setting a blueprint for the nation. As the energy capital of the world, it is both our responsibility and our opportunity to lead the way to a more equitable future for all.

---

Sam Luna is director at BKV Energy, where he oversees brand and go-to-market strategy, customer experience, marketing execution, and more.

Houston professor awarded $2.6M grant for retina, neurological research

seeing green

University of Houston College of Optometry Professor John O’Brien has received a $2.6 million grant from the National Eye Institute to continue his research on the retina and neurological functions.

O’Brien is considered a leading expert in retinal neuroscience with more than 20 years of research in the field. The new funding will allow O’Brien and his team to continue to study the dense assembly of proteins associated with electrical synapses, or gap junctions, in the retina.

Gap junctions transfer electrical signals between neurons. And the plasticity of gap junctions changes the strength of a synapse, in turn changing how visual information is processed. Previous research has shown that reduced functions of electrical synapses could be linked to autism, while their hyperfunction may lead to seizures.

“The research we propose will significantly advance our understanding of the molecular complexes that control the function of electrical synapses,” O’Brien said in a news release.

The team at UH will work to identify the proteins and examine how they impact electrical synapses. It is particularly interested in the Connexin 36, or Cx36, protein. According to O’Brien, phosphorylation of Cx36, a short-term chemical modification of the protein, serves as a key driver of plasticity. And the protein has been linked to refractive error development, which is one of the largest vision problems in the world today.

Additionally, OBrien’s research has shown that plasticity is essential for all-day vision, allowing the retina to adjust sensitivity and sharpen images. He has also built a catalog of the core set of proteins surrounding electrical synapses that are conserved across species. His research has been funded by the NEI since 2000.