A new partnership on Earth will help navigate the future of space health. Photo via NASA

Houston's Translational Research Institute for Space Health, or TRISH, has entered into an agreement with the Korea National Institute of Health to collaborate on research and discovery relating to space health.

According to a release, the organizations aim to uncover health findings that can assist in NASA's upcoming Artemis missions, as well as have Earth-bound impacts. The agreement is a Memorandum of Understanding which states that both organizations will "develop fruitful areas of cooperation for space health."

TRISH — which is affiliated with Baylor College of Medicine — and KNIH plan to collaborate on research related to mental health issues due to space travel, the challenges of food supply in deep space, the negative effects of space radiation and en-suite medical care for long-duration space travel.

“As in space, there should be no borders or boundaries to scientific discovery that benefits humankind,” Dorit Donoviel, associate professor in the Center for Space Medicine at Baylor and executive director TRISH said in a statement. “With this agreement, we will work together with the KNIH to collaborate and foster meaningful discussion with the ambition of keeping humans healthy in space and on Earth.”

TRISH announced last month that it will launch six experiments into space aboard Axiom Space's Ax-2 mission in consortium with CalTeach and MIT, which was originally targeted to launch this month.

TRISH is also slated to launch nine experiments on board SpaceX's Polaris Dawn mission, which is now expected to launch in September.

Some of the information found from these missions will become part of TRISH’s Enhancing eXploration Platforms and ANalog Definition, or EXPAND, program, which aims to boost human health on commercial space flights through its database. The program launched in 2021.
Houston-based TRISH's research will be done aboard the Polaris Dawn by its crew, which includes, from left to right, Mission Specialist and Medical Officer Anna Menon, Mission Pilot Scott “Kidd” Poteet, Mission Commander Jared “Rook” Isaacman, Mission Specialist Sarah Gillis. Photo courtesy Polaris Program/John Kraus

Houston space health institute to send experiments on upcoming SpaceX mission

ready for takeoff

The Translational Research Institute for Space Health at Baylor College of Medicine, or TRISH, announced this month that it will perform research experiments aboard SpaceX's upcoming Polaris Dawn mission that will look into everything from human vision to motion sickness to radiation levels while in space.

The research aboard Polaris Dawn will complement research supported by TRISH on the Inspiration4 all-civilian mission to orbit, which was also operated by SpaceX in 2021.

“The Institute’s mission is to help humans thrive in deep space,” Dr. Dorit Donoviel, TRISH executive director and associate professor for the Center for Space Medicine at Baylor, said in a statement. “We are grateful to our commercial space exploration partners, and in particular, the Polaris Program, who recognize how important it is to carry out and support health research in their missions, as a route to improving health for all humans in space and on Earth.”

Polaris Dawn is slated to launch from NASA’s Kennedy Space Center in Florida no earlier than March 2023. It is part of SpaceX's Polaris Program, which proposes three space missions. The first mission aims to reach the highest Earth orbit ever flown.

Four crew members will be onboard SpaceX’s Falcon 9 rocket for the Polaris Dawn mission. TRISH's experiments are part of 38 experiments from institutions that will be conducted on board at high-altitude Earth orbit.

The experiments are supported by federal funding from TRISH's cooperative agreement with NASA, as well as a donation from the Polaris Program.

According to a statement from TRISH, the experiments will include the following:

  • Collecting data related to the vision condition Spaceflight Associated Neuro-Ocular Syndrome (SANS), which is a top risk to human health in long-duration spaceflight
  • Quantifying alterations in body composition and fluid distribution during exposure to weightlessness
  • Directly measuring intracranial pressure changes to quantify the effects of weightlessness on the brain
  • Measuring cognitive performance, which reflects fitness for duty
  • Collecting biometric data to track physiologic changes, which could inform on changes in overall health
  • Using miniaturized, intelligent ultrasound to train the astronauts to scan themselves and deliver medical quality images
  • Testing ways to predict space motion sickness to improve crew safety and in-mission performance
  • Collecting data on the radiation environment to observe how space radiation may affect human systems
  • Providing biological samples for multi-omics analyses and storage in a long-term biobank to be available to researchers in the future

TRISH launched the first-ever commercial spaceflight medical research program in 2021, known as the Expand—Enhancing Exploration Platforms and Analog Definition—Program. Future findings from the Polaris Dawn mission will be added to the database, which compiles in-flight health data from multiple spaceflights.

TRISH was founded in 2016 with the mission of addressing the most pressing health risks and challenges associated with human deep space exploration.

TRISH is seeking space health scientists to support with new initiative. Photo via BCM.edu

Houston organization launches new fellowship to support the future of space health

we have liftoff

A space health-focused organization has announced a new fellowship opportunity for scientists.

The Translational Research Institute for Space Health, or TRISH, housed out of Baylor College of Medicine has announced — along with partners California Institute of Technology and Massachusetts Institute of Technology — a new fellowship opportunity for postdoctoral scientists tackling the health challenges of deep space exploration and innovating solutions.

“TRISH is a launch pad for exceptional postdoctoral fellows investigating new ways to protect human health,” says Rachael Dempsey, education officer for TRISH, in a news release. “Space health science leads to innovations that help humans thrive, wherever they explore. Our institute is committed to building a diverse and engaged workforce prepared for humanity’s future in space.”

TRISH’s postdoctoral fellowship program will select fellows who will then participate in TRISH’s Academy of Bioastronautics — a mentorship community for space health professionals. The professionals will receive a two-year salary stipend as they conduct their work.

“America’s future is in space exploration, and it’s time to invest in the scientists that will bring forward ground-breaking advances to enable that exciting future,” says Dr. Dorit Donoviel, TRISH executive director, in the release.

Those interested can submit their proposals together with an identified mentor and institution online up until January 26, 2023. Independent investigators with existing research grant support may request to be listed as possible mentors for this program by contacting Jean De La Croix Ndong at jndong@nasaprs.com, per the news release.

Supported in part by NASA, Houston-based TRISH is focused on supporting scientists committed to creating space health treatments and solution for the future of space travel.

The human body undergoes specific challenges in space. A new film from TRISH explains the unique phenomenon and how research is helping to improve human life in space. Photo courtesy of NASA

Houston-based organization premieres space health tech documentary

watch now

A Houston space health organization has launched a film that is available to anyone interested in how space affects the human body.

The Translational Research Institute for Space Health, or TRISH, which is housed out of Baylor College of Medicine in consortium with Caltech and the Massachusetts Institute of Technology, announced a new documentary — “Space Health: Surviving in the Final Frontier.” The film, which covers how space affects humans both physically and mentally. It's free to watch online.

“This documentary provides an unprecedented look into the challenges – physical and mental – facing space explorers and the types of innovative research that TRISH supports to address these challenges,” says Dr. Dorit Donoviel, TRISH executive director and associate professor in Baylor’s Center for Space Medicine, in a news release. “We hope the film inspires students and researchers alike to see how their work could one day soon improve the lives of human explorers.”

The documentary interviews a wide range of experts — scientists, flight surgeons, astronauts, etc. — about all topics related to health, like food, medicine, radiation, isolation, and more. Some names you'll see on the screen include:

  • Former NASA astronaut Nicole Stott
  • Active NASA astronaut Victor Glover
  • NASA Associate Administrator Kathy Lueders
  • Inspiration4 Commander Jared Issacman
  • TRISH-funded researchers Level Ex CEO Sam Glassenberg and Holobiome CEO Philip Strandwitz

“Understanding and solving the challenges that face humans in space is critical work,” says Dr. Jennifer Fogarty, TRISH chief scientific officer, in the release. “Not only does space health research aim to unlock new realms of possibility for human space exploration, but it also furthers our ability to innovate on earth, providing insights for healthcare at home.”

TRISH is funded by NASA’s Human Research Program and seeks both early stage and translation-ready research and technology to protect and improve the health and performance of space explorers. This film was enabled by a collaboration with NASA and HRP.

This week's roundup of Houston innovators includes Dorit Donoviel of TRISH, Nuri Firat Ince of UH, and Vanessa Wade of Connect the Dots. Courtesy photos

3 Houston innovators to know this week

who's who

Editor's note: In this week's roundup of Houston innovators to know, I'm introducing you to three local innovators across industries — from space to engineering — recently making headlines in Houston innovation.


Dorit Donoviel, director of the Translational Research Institute for Space Health

Dorit Donoviel, director of the Translational Research Institute for Space Health

The new program will work with commercial spaceflight crews to bring back crucial research to one database. Photo via Libby Neder Photography

The Translational Research Institute for Space Health, or TRISH, at Baylor College of Medicine announced a unique program that will work with commercial spaceflight providers and their passengers. The EXPAND — Enhancing eXploration Platforms and Analog Definition — Program will collect information and data from multiple space flights and organize it in one place. TRISH selected TrialX to build the centralized database.

"The space environment causes rapid body changes. This can help us understand how we humans react to and overcome stress. Ensuring that space explorers remain healthy pushes us to invent new approaches for early detection and prevention of medical conditions," says Dorit Donoviel, executive director at TRISH, in the release.

"Studying a broad range of people in space increases our knowledge of human biology. TRISH's EXPAND program will leverage opportunities with commercial spaceflight providers and their willing crew to open up new research horizons." Click here to read more.

Nuri Firat Ince, associate professor of biomedical engineering at UH

A medical device designed by a UH professor will close the loop with high frequency brain waves to prevent seizures from occurring. Photo via uh.edu

Nuri Firat Ince, an associate professor of biomedical engineering at UH, has received a federal grant aimed at helping stop epileptic seizures before they start. The BRAIN Initiative at the National Institute of Neurological Disorders and Stroke awarded the $3.7 million grant to go toward Ince's work to create a seizure-halting device based on his research.

According to UH, Ince has reduced by weeks the time it takes to locate the seizure onset zone (SOZ), the part of the brain that causes seizures in patients with epilepsy. He's done this by detecting high-frequency oscillations (HFO) forming "repetitive waveform patterns" that identify their location in the SOZ.

"If the outcomes of our research in acute settings become successful, we will execute a clinical trial and run our methods with the implanted … system in a chronic ambulatory setting," Ince says. Click here to read more.

Vanessa Wade, founder and owner of Connect the Dots

It's time for large corporations to step up to support small businesses founded by people of color. Photo courtesy

In her guest column for InnovationMap, Vanessa Wade addressed some of the challenges she faced founding a company as a person of color — specifically the lack of access to funding. In the article, she calls corporations to action to help business leaders like herself.

"The journey ahead can feel discouraging, but the good news is that now I have a much better idea of what it will take to build an equitable road back and get businesses like mine on even footing," she writes. Click here to read more.

The new program will work with commercial spaceflight crews to bring back crucial research to one database. Photo via NASA/Unsplash

Houston organization launches the first commercial spaceflight medical research program

out of this world health care

With commercial space activity reaching cruising altitude, a Houston space health research organization has introduced a new program to create a centralized database.

The Translational Research Institute for Space Health, or TRISH, at Baylor College of Medicine announced a unique program that will work with commercial spaceflight providers and their passengers. The EXPAND — Enhancing eXploration Platforms and Analog Definition — Program will collect information and data from multiple space flights and organize it in one place. TRISH selected TrialX to build the centralized database.

As a partner to the NASA Human Research Program, the Houston-based organization's mission is to reduce health risks for astronauts and uncover advances for terrestrial healthcare, according to a news release.

"The space environment causes rapid body changes. This can help us understand how we humans react to and overcome stress. Ensuring that space explorers remain healthy pushes us to invent new approaches for early detection and prevention of medical conditions," says Dorit Donoviel, executive director at TRISH, in the release. "Studying a broad range of people in space increases our knowledge of human biology. TRISH's EXPAND program will leverage opportunities with commercial spaceflight providers and their willing crew to open up new research horizons."

The new collaborative program is meant to address the challenges that humans face on space missions — early detection and treatment of medical conditions, protection from radiation, mental health, team dynamics, and more. TRISH has been working on these challenges since its inception.

"This ground-breaking research model is only possible because everyone — scientists, commercial spaceflight companies, and passengers - recognizes the importance of space health research, and what we can learn by working together," says Dr. Emmanuel Urquieta, TRISH's chief medical officer, in the release.

EXPAND's first collaboration is the Inspiration4 mission, which is launching on September 15. The all-civilian crew will perform a variety of TRISH-supported human health experiments during their time in orbit.

"Shorter commercial space flights like Inspiration4 have similarities to early NASA Artemis missions," says Jimmy Wu, TRISH's senior biomedical engineer. "This allows TRISH an opportunity to test new health and performance technologies for future NASA astronauts."

The potential impact of innovation with this new centralized database and biobank is profound, says James Hury, TRISH's deputy director and chief innovation officer.

"The EXPAND database has the flexibility to seamlessly take in multiple types of data from different flight providers in order to create a repository that can integrate information," says Hury in the release. "A centralized, standardized research database and biobank will increase access to knowledge about human health for the global research community."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

​Planned UT Austin med center, anchored by MD Anderson, gets $100M gift​

med funding

The University of Texas at Austin’s planned multibillion-dollar medical center, which will include a hospital run by Houston’s University of Texas MD Anderson Cancer Center, just received a $100 million boost from a billionaire husband-and-wife duo.

Tench Coxe, a former venture capitalist who’s a major shareholder in chipmaking giant Nvidia, and Simone Coxe, co-founder and former CEO of the Blanc & Otus PR firm, contributed the $100 million—one of the largest gifts in UT history. The Coxes live in Austin.

“Great medical care changes lives,” says Simone Coxe, “and we want more people to have access to it.”

The University of Texas System announced the medical center project in 2023 and cited an estimated price tag of $2.5 billion. UT initially said the medical center would be built on the site of the Frank Erwin Center, a sports and entertainment venue on the UT Austin campus that was demolished in 2024. The 20-acre site, north of downtown and the state Capitol, is near Dell Seton Medical Center, UT Dell Medical School and UT Health Austin.

Now, UT officials are considering a bigger, still-unidentified site near the Domain mixed-use district in North Austin, although they haven’t ruled out the Erwin Center site. The Domain development is near St. David’s North Medical Center.

As originally planned, the medical center would house a cancer center built and operated by MD Anderson and a specialty hospital built and operated by UT Austin. Construction on the two hospitals is scheduled to start this year and be completed in 2030. According to a 2025 bid notice for contractors, each hospital is expected to encompass about 1.5 million square feet, meaning the medical center would span about 3 million square feet.

Features of the MD Anderson hospital will include:

  • Inpatient care
  • Outpatient clinics
  • Surgery suites
  • Radiation, chemotherapy, cell, and proton treatments
  • Diagnostic imaging
  • Clinical drug trials

UT says the new medical center will fuse the university’s academic and research capabilities with the medical and research capabilities of MD Anderson and Dell Medical School.

UT officials say priorities for spending the Coxes’ gift include:

  • Recruiting world-class medical professionals and scientists
  • Supporting construction
  • Investing in technology
  • Expanding community programs that promote healthy living and access to care

Tench says the opportunity to contribute to building an institution from the ground up helped prompt the donation. He and others say that thanks to MD Anderson’s participation, the medical center will bring world-renowned cancer care to the Austin area.

“We have a close friend who had to travel to Houston for care she should have been able to get here at home. … Supporting the vision for the UT medical center is exactly the opportunity Austin needed,” he says.

The rate of patients who leave the Austin area to seek care for serious medical issues runs as high as 25 percent, according to UT.

New Rice Brain Institute partners with TMC to award inaugural grants

brain trust

The recently founded Rice Brain Institute has named the first four projects to receive research awards through the Rice and TMC Neuro Collaboration Seed Grant Program.

The new grant program brings together Rice faculty with clinicians and scientists at The University of Texas Medical Branch, Baylor College of Medicine, UTHealth Houston and The University of Texas MD Anderson Cancer Center. The program will support pilot projects that address neurological disease, mental health and brain injury.

The first round of awards was selected from a competitive pool of 40 proposals, and will support projects that reflect Rice Brain Institute’s research agenda.

“These awards are meant to help teams test bold ideas and build the collaborations needed to sustain long-term research programs in brain health,” Behnaam Aazhang, Rice Brain Institute director and co-director of the Rice Neuroengineering Initiative, said in a news release.

The seed funding has been awarded to the following principal investigators:

  • Kevin McHugh, associate professor of bioengineering and chemistry at Rice, and Peter Kan, professor and chair of neurosurgery at the UTMB. McHugh and Kan are developing an injectable material designed to seal off fragile, abnormal blood vessels that can cause life-threatening bleeding in the brain.
  • Jerzy Szablowski, assistant professor of bioengineering at Rice, and Jochen Meyer, assistant professor of neurology at Baylor. Szablowski and Meyer are leading a nonsurgical, ultrasound approach to deliver gene-based therapies to deep brain regions involved in seizures to control epilepsy without implanted electrodes or invasive procedures.
  • Juliane Sempionatto, assistant professor of electrical and computer engineering at Rice, and Aaron Gusdon, associate professor of neurosurgery at UTHealth Houston. Sempionatto and Gusdon are leading efforts to create a blood test that can identify patients at high risk for delayed brain injury following aneurysm-related hemorrhage, which could lead to earlier intervention and improved outcomes.
  • Christina Tringides, assistant professor of materials science and nanoengineering at Rice, and Sujit Prabhu, professor of neurosurgery at MD Anderson, who are working to reduce the risk of long-term speech and language impairment during brain tumor removal by combining advanced brain recordings, imaging and noninvasive stimulation.

The grants were facilitated by Rice’s Educational and Research Initiatives for Collaborative Health (ENRICH) Office. Rice says that the unique split-funding model of these grants could help structure future collaborations between the university and the TMC.

The Rice Brain Institute launched this fall and aims to use engineering, natural sciences and social sciences to research the brain and reduce the burden of neurodegenerative, neurodevelopmental and mental health disorders. Last month, the university's Shepherd School of Music also launched the Music, Mind and Body Lab, an interdisciplinary hub that brings artists and scientists together to study the "intersection of the arts, neuroscience and the medical humanities." Read more here.

Your data center is either closer than you think or much farther away

houston voices

A new study shows why some facilities cluster in cities for speed and access, while others move to rural regions in search of scale and lower costs. Based on research by Tommy Pan Fang (Rice Business) and Shane Greenstein (Harvard).

Key findings:

  • Third-party colocation centers are physical facilities in close proximity to firms that use them, while cloud providers operate large data centers from a distance and sell access to virtualized computing resources as on‑demand services over the internet.
  • Hospitals and financial firms often require urban third-party centers for low latency and regulatory compliance, while batch processing and many AI workloads can operate more efficiently from lower-cost cloud hubs.
  • For policymakers trying to attract data centers, access to reliable power, water and high-capacity internet matter more than tax incentives.

Recent outages and the surge in AI-driven computing have made data center siting decisions more consequential than ever, especially as energy and water constraints tighten. Communities invest public dollars on the promise of jobs and growth, while firms weigh long-term commitments to land, power and connectivity.

Against that backdrop, a critical question comes into focus: Where do data centers get built — and what actually drives those decisions?

A new study by Tommy Pan Fang (Rice Business) and Shane Greenstein (Harvard Business School) provides the first large-scale statistical analysis of data center location strategies across the United States. It offers policymakers and firms a clearer starting point for understanding how different types of data centers respond to economic and strategic incentives.

Forthcoming in the journal Strategy Science, the study examines two major types of infrastructure: third-party colocation centers that lease server space to multiple firms, and hyperscale cloud centers owned by providers like Amazon, Google and Microsoft.

Two Models, Two Location Strategies

The study draws on pre-pandemic data from 2018 and 2019, a period of relative geographic stability in supply and demand. This window gives researchers a clean baseline before remote work, AI demand and new infrastructure pressures began reshaping internet traffic patterns.

The findings show that data centers follow a bifurcated geography. Third-party centers cluster in dense urban markets, where buyers prioritize proximity to customers despite higher land and operating costs. Cloud providers, by contrast, concentrate massive sites in a small number of lower-density regions, where electricity, land and construction are cheaper and economies of scale are easier to achieve.

Third-party data centers, in other words, follow demand. They locate in urban markets where firms in finance, healthcare and IT value low latency, secure storage, and compliance with regulatory standards.

Using county-level data, the researchers modeled how population density, industry mix and operating costs predict where new centers enter. Every U.S. metro with more than 700,000 residents had at least one third-party provider, while many mid-sized cities had none.

ImageThis pattern challenges common assumptions. Third-party facilities are more distributed across urban America than prevailing narratives suggest.

Customer proximity matters because some sectors cannot absorb delay. In critical operations, even slight pauses can have real consequences. For hospital systems, lag can affect performance and risk exposure. And in high-frequency trading, milliseconds can determine whether value is captured or lost in a transaction.

“For industries where speed is everything, being too far from the physical infrastructure can meaningfully affect performance and risk,” Pan Fang says. “Proximity isn’t optional for sectors that can’t absorb delay.”

The Economics of Distance

For cloud providers, the picture looks very different. Their decisions follow a logic shaped primarily by cost and scale. Because cloud services can be delivered from afar, firms tend to build enormous sites in low-density regions where power is cheap and land is abundant.

These facilities can draw hundreds of megawatts of electricity and operate with far fewer employees than urban centers. “The cloud can serve almost anywhere,” Pan Fang says, “so location is a question of cost before geography.”

The study finds that cloud infrastructure clusters around network backbones and energy economics, not talent pools. Well-known hubs like Ashburn, Virginia — often called “Data Center Alley” — reflect this logic, having benefited from early network infrastructure that made them natural convergence points for digital traffic.

Local governments often try to lure data centers with tax incentives, betting they will create high-tech jobs. But the study suggests other factors matter more to cloud providers, including construction costs, network connectivity and access to reliable, affordable electricity.

When cloud centers need a local presence, distance can sometimes become a constraint. Providers often address this by working alongside third-party operators. “Third-party centers can complement cloud firms when they need a foothold closer to customers,” Pan Fang says.

That hybrid pattern — massive regional hubs complementing strategic colocation — may define the next phase of data center growth.

Looking ahead, shifts in remote work, climate resilience, energy prices and AI-driven computing may reshape where new facilities go. Some workloads may move closer to users, while others may consolidate into large rural hubs. Emerging data-sovereignty rules could also redirect investment beyond the United States.

“The cloud feels weightless,” Pan Fang says, “but it rests on real choices about land, power and proximity.”

---

This article originally appeared on Rice Business Wisdom. Written by Scott Pett.

Pan Fang and Greenstein (2025). “Where the Cloud Rests: The Economic Geography of Data Centers,” forthcoming in Strategy Science.