A Houston research team is studying the effects of regenerative medicine on hearts. Photo via TMC.org

Ask any high achiever and they’ll tell you — failure is the path to success.

As Camila Hochman-Mendez puts it, “I’m like Thomas Edison, right? I know a thousand ways of how not to create a lightbulb.” But she’s not really talking about electricity. Hochman-Mendez is director of Regenerative Medicine Research and the Biorepository Core at Texas Heart Institute.

Hochman-Mendez follows another pioneering woman in the role, Doris Taylor. The younger scientist took on the prime job when Taylor left in 2020. By then, Hochman-Mendez had been at The Texas Heart Institute for three years, moving from research scientist to assistant director in just four months.

Regenerative Medicine is every bit as exciting as it sounds. At Hochman-Mendez’s lab, her team creates ghost hearts — organs from which all cells are scrubbed, leaving collagen, fibronectin, and laminin in the shape of the formerly beating ticker. The goal is to use the decellularized organs as protein scaffolds that, once injected with stem cells, will once again contract and pump blood.

Hochman-Mendez cautions that we are still years away from that point, but her lab is working hard to get there.

“The ultimate goal is to develop functional hearts that can be used for transplant,” says Hochman-Mendez.

Those hearts would be made from the patient’s own cells, avoiding organ rejection, which the scientist says is essentially trading one disease for another. But she is realistic about that fact that there are many barriers to her success.

“It does come with a lot of technical challenges,” she says.

These challenges include the simple number of cells that billions, and potentially hundreds of billions of cardiomyocytes are needed to recreate a human heart. The necessary protocols, Hochman-Mendez explains, are extremely costly and labor intensive.

It also takes 60 days for the cells to reach a maturity at which they can function. The lab recently received a pair of grants targeted at creating bioreactors that can be reliable for at least those 60 days.

The third major issue facing the Regenerative Medicine lab is contamination.

“It needs to be very sterile,” says Hochman-Mendez. “It needs to be so clean that if you have one tiny bacteria there, you’re screwed.”

Fortunately, the scientist says that her favorite hobby is computer programming. She and a physician colleague have created a robotic arm that can help to prevent the contamination that often stemmed from humans manually injecting stem cells into the decellularized organs.

This not only works towards solving the contamination problem, it also allows the team to more accurately distribute the cells that they add, using an injection map. To that end, she is producing a three-dimensional model of a protein scaffold that will allow her team and other scientists in the field of regenerative medicine to understand how the cells really disperse when they inject them.

When will her lab produce working hearts?

“I try to be very conservative on timing,” she says.

She explains that it will take significant leaps in technology to make a heart mature to the level at which it’s usable for an adult body in 60 days.

“That’s magic and I don’t believe in magic,” she says, but adds that she hopes to have a prototype ready to be tested in five years.

Hochman-Mendez does this all with a small team of nine researchers, most of whom happen to be female.

“The best candidates are the ones that I select," she says. "The majority are females. I think it’s a mix of trying to be very unbiased, but I usually don’t even look at the name before looking at the CV to preselect the people that I interview.”

And together, Hochman-Mendez are making medical history, one success-spawning failure at a time.

Camila Hochman-Mendez is director of Regenerative Medicine Research and the Biorepository Core at Texas Heart Institute. Photo via texasheart.org

Doris Taylor from the Texas Heart Institute has been named to the National Academy of Inventors.

Houston inventor receives national recognition for leading innovation

Leading lady

A Houston inventor is being recognized for her leadership within cardiovascular regenerative medicine. Doris A. Taylor from the Texas Heart Institute has been named among the National Academy of Inventors' 54 academic inventors to the spring 2019 class of NAI Senior Members.

Taylor's work involves finding alternatives for the current practices for organ transplants, including the whole organ decellularization/recellularization technologies she developed in 2008.

"Dr. Taylor's work has revolutionized the field by making it possible to bioengineer scaffolds that effectively mimic natural organs," says Dr. Darren Woodside, Texas Heart Institute's vice president for research, in a news release. "The three U.S. patents she currently holds have spun off 28 international patents, stimulating the worldwide tissue engineering industry. Her current research team is refining these technologies and developing others, potentially revolutionizing the transplantation industry and eliminating wait lists for life-saving transplantable organs."

NAI selects its honorees by identifying their impact on the welfare of society, the release reads, and have proven success with their patents, licensing, and commercialization.

NAI Senior Members are active faculty, scientists and administrators from its Member Institutions who have demonstrated remarkable innovation producing technologies that have brought, or aspire to bring, real impact on the welfare of society. They also have proven success in patents, licensing and commercialization.

An individual's nomination for the NAI Senior Member class by its supporting institution is a distinct honor and a significant way for the organization to publicly recognize its innovators on a national level.At their host institutions, Senior Members foster a spirit of innovation, while educating and mentoring the next generation of inventors.

The new class of NAI Senior Members includes representatives from 32 institutions. Texas A&M University has two researchers in the class — Robert Balog, an associate professor in the Department of Electrical and Computer Engineering, and Balakrishna Haridas, a professor of practice in the Department of Biomedical Engineering and executive director for technology commercialization and entrepreneurship for the Texas A&M Engineering Experiment Station.

This latest class of NAI Senior Members represents 32 research universities and government and non-profit research institutes. They are named inventors on over 860 issued U.S. patents. In February, two Houston inventors were named to the inaugural class of senior members.

"NAI Member Institutions support some of the most elite innovators on the horizon. With the NAI Senior Member award distinction, we are recognizing innovators that are rising stars in their fields," says Paul R. Sanberg, NAI president, in the release. "This new class is joining a prolific group of academic visionaries already defining tomorrow."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston engineers develop breakthrough device to advance spinal cord treatment

future of health

A team of Rice University engineers has developed an implantable probe over a hundred times smaller than the width of a hair that aims to help develop better treatments for spinal cord disease and injury.

Detailed in a recent study published in Cell Reports, the probe or sensor, known as spinalNET, is used to explore how neurons in the spinal cord process sensation and control movement, according to a statement from Rice. The research was supported by the National Institutes of Health, Rice, the California-based Salk Institute for Biological Studies, and the philanthropic Mary K. Chapman Foundation based in Oklahoma.

The soft and flexible sensor was used to record neuronal activity in freely moving mice with high resolution for multiple days. Historically, tracking this level of activity has been difficult for researchers because the spinal cord and its neurons move so much during normal activity, according to the team.

“We developed a tiny sensor, spinalNET, that records the electrical activity of spinal neurons as the subject performs normal activity without any restraint,” Yu Wu, a research scientist at Rice and lead author of the study said in a statement. “Being able to extract such knowledge is a first but important step to develop cures for millions of people suffering from spinal cord diseases.”

The team says that before now the spinal cord has been considered a "black box." But the device has already helped the team uncover new findings about the body's rhythmic motor patterns, which drive walking, breathing and chewing.

Lan Luan (from left), Yu Wu, and Chong Xie are working on the breakthrough device. Photo by Jeff Fitlow/Rice University

"Some (spinal neurons) are strongly correlated with leg movement, but surprisingly, a lot of neurons have no obvious correlation with movement,” Wu said in the statement. “This indicates that the spinal circuit controlling rhythmic movement is more complicated than we thought.”

The team said they hope to explore these findings further and aim to use the technology for additional medical purposes.

“In addition to scientific insight, we believe that as the technology evolves, it has great potential as a medical device for people with spinal cord neurological disorders and injury,” Lan Luan, an associate professor of electrical and computer engineering at Rice and a corresponding author on the study, added in the statement.

Rice researchers have developed several implantable, minimally invasive devices to address health and mental health issues.

In the spring, the university announced that the United States Department of Defense had awarded a four-year, $7.8 million grant to the Texas Heart Institute and a Rice team led by co-investigator Yaxin Wang to continue to break ground on a novel left ventricular assist device (LVAD) that could be an alternative to current devices that prevent heart transplantation.

That same month, the university shared news that Professor Jacob Robinson had published findings on minimally invasive bioelectronics for treating psychiatric conditions. The 9-millimeter device can deliver precise and programmable stimulation to the brain to help treat depression, obsessive-compulsive disorder and post-traumatic stress disorder.

Houston clean hydrogen startup to pilot tech with O&G co.

stay gold

Gold H2, a Houston-based producer of clean hydrogen, is teaming up with a major U.S.-based oil and gas company as the first step in launching a 12-month series of pilot projects.

The tentative agreement with the unnamed oil and gas company kicks off the availability of the startup’s Black 2 Gold microbial technology. The technology underpins the startup’s biotech process for converting crude oil into proprietary Gold Hydrogen.

The cleantech startup plans to sign up several oil and gas companies for the pilot program. Gold H2 says it’s been in discussions with companies in North America, Latin America, India, Eastern Europe and the Middle East.

The pilot program is aimed at demonstrating how Gold H2’s technology can transform old oil wells into hydrogen-generating assets. Gold H2, a spinout of Houston-based biotech company Cemvita, says the technology is capable of producing hydrogen that’s cheaper and cleaner than ever before.

“This business model will reshape the traditional oil and gas industry landscape by further accelerating the clean energy transition and creating new economic opportunities in areas that were previously dismissed as unviable,” Gold H2 says in a news release.

The start of the Black 2 Gold demonstrations follows the recent hiring of oil and gas industry veteran Prabhdeep Singh Sekhon as CEO.

“With the proliferation of AI, growth of data centers, and a national boom in industrial manufacturing underway, affordable … carbon-free energy is more paramount than ever,” says Rayyan Islam, co-founder and general partner at venture capital firm 8090 Industries, an investor in Gold H2. “We’re investing in Gold H2, as we know they’ll play a pivotal role in unleashing a new dawn for energy abundance in partnership with the oil industry.”

------

This article originally ran on EnergyCapital.

3 Houston innovators to know this week

who's who

Editor's note: Every week, I introduce you to a handful of Houston innovators to know recently making headlines with news of innovative technology, investment activity, and more. This week's batch includes an e-commerce startup founder, an industrial biologist, and a cellular scientist.

Omair Tariq, co-founder and CEO of Cart.com

Omair Tariq of Cart.com joins the Houston Innovators Podcast to share his confidence in Houston as the right place to scale his unicorn. Photo via Cart.com

Houston-based Cart.com, which operates a multichannel commerce platform, has secured $105 million in debt refinancing from investment manager BlackRock.

The debt refinancing follows a recent $25 million series C extension round, bringing Cart.com’s series C total to $85 million. The scaleup’s valuation now stands at $1.2 billion, making it one of the few $1 billion-plus “unicorns” in the Houston area.

Cart.com was co-founded by CEO Omair Tariq in October 2020. Read more.

Nádia Skorupa Parachin, vice president of industrial biotechnology at Cemvita

Nádia Skorupa Parachin joined Cemvita as vice president of industrial biotechnology. Photo courtesy of Cemvita

Houston-based biotech company Cemvita recently tapped two executives to help commercialize its sustainable fuel made from carbon waste.

Nádia Skorupa Parachin came aboard as vice president of industrial biotechnology, and Phil Garcia was promoted to vice president of commercialization.

Parachin most recently oversaw several projects at Boston-based biotech company Ginkjo Bioworks. She previously co-founded Brazilian biotech startup Integra Bioprocessos. Read more.

Han Xiao, associate professor of chemistry at Rice University

The funds were awarded to Han Xiao, a chemist at Rice University.

A Rice University chemist has landed a $2 million grant from the National Institute of Health for his work that aims to reprogram the genetic code and explore the role certain cells play in causing diseases like cancer and neurological disorders.

The funds were awarded to Han Xiao, the Norman Hackerman-Welch Young Investigator, associate professor of chemistry, from the NIH's Maximizing Investigators’ Research Award (MIRA) program, which supports medically focused laboratories. Xiao will use the five-year grant to advance his work on noncanonical amino acids.

“This innovative approach could revolutionize how we understand and control cellular functions,” Xiao said in the statement. Read more.