A Houston research team is studying the effects of regenerative medicine on hearts. Photo via TMC.org

Ask any high achiever and they’ll tell you — failure is the path to success.

As Camila Hochman-Mendez puts it, “I’m like Thomas Edison, right? I know a thousand ways of how not to create a lightbulb.” But she’s not really talking about electricity. Hochman-Mendez is director of Regenerative Medicine Research and the Biorepository Core at Texas Heart Institute.

Hochman-Mendez follows another pioneering woman in the role, Doris Taylor. The younger scientist took on the prime job when Taylor left in 2020. By then, Hochman-Mendez had been at The Texas Heart Institute for three years, moving from research scientist to assistant director in just four months.

Regenerative Medicine is every bit as exciting as it sounds. At Hochman-Mendez’s lab, her team creates ghost hearts — organs from which all cells are scrubbed, leaving collagen, fibronectin, and laminin in the shape of the formerly beating ticker. The goal is to use the decellularized organs as protein scaffolds that, once injected with stem cells, will once again contract and pump blood.

Hochman-Mendez cautions that we are still years away from that point, but her lab is working hard to get there.

“The ultimate goal is to develop functional hearts that can be used for transplant,” says Hochman-Mendez.

Those hearts would be made from the patient’s own cells, avoiding organ rejection, which the scientist says is essentially trading one disease for another. But she is realistic about that fact that there are many barriers to her success.

“It does come with a lot of technical challenges,” she says.

These challenges include the simple number of cells that billions, and potentially hundreds of billions of cardiomyocytes are needed to recreate a human heart. The necessary protocols, Hochman-Mendez explains, are extremely costly and labor intensive.

It also takes 60 days for the cells to reach a maturity at which they can function. The lab recently received a pair of grants targeted at creating bioreactors that can be reliable for at least those 60 days.

The third major issue facing the Regenerative Medicine lab is contamination.

“It needs to be very sterile,” says Hochman-Mendez. “It needs to be so clean that if you have one tiny bacteria there, you’re screwed.”

Fortunately, the scientist says that her favorite hobby is computer programming. She and a physician colleague have created a robotic arm that can help to prevent the contamination that often stemmed from humans manually injecting stem cells into the decellularized organs.

This not only works towards solving the contamination problem, it also allows the team to more accurately distribute the cells that they add, using an injection map. To that end, she is producing a three-dimensional model of a protein scaffold that will allow her team and other scientists in the field of regenerative medicine to understand how the cells really disperse when they inject them.

When will her lab produce working hearts?

“I try to be very conservative on timing,” she says.

She explains that it will take significant leaps in technology to make a heart mature to the level at which it’s usable for an adult body in 60 days.

“That’s magic and I don’t believe in magic,” she says, but adds that she hopes to have a prototype ready to be tested in five years.

Hochman-Mendez does this all with a small team of nine researchers, most of whom happen to be female.

“The best candidates are the ones that I select," she says. "The majority are females. I think it’s a mix of trying to be very unbiased, but I usually don’t even look at the name before looking at the CV to preselect the people that I interview.”

And together, Hochman-Mendez are making medical history, one success-spawning failure at a time.

Camila Hochman-Mendez is director of Regenerative Medicine Research and the Biorepository Core at Texas Heart Institute. Photo via texasheart.org

Doris Taylor from the Texas Heart Institute has been named to the National Academy of Inventors.

Houston inventor receives national recognition for leading innovation

Leading lady

A Houston inventor is being recognized for her leadership within cardiovascular regenerative medicine. Doris A. Taylor from the Texas Heart Institute has been named among the National Academy of Inventors' 54 academic inventors to the spring 2019 class of NAI Senior Members.

Taylor's work involves finding alternatives for the current practices for organ transplants, including the whole organ decellularization/recellularization technologies she developed in 2008.

"Dr. Taylor's work has revolutionized the field by making it possible to bioengineer scaffolds that effectively mimic natural organs," says Dr. Darren Woodside, Texas Heart Institute's vice president for research, in a news release. "The three U.S. patents she currently holds have spun off 28 international patents, stimulating the worldwide tissue engineering industry. Her current research team is refining these technologies and developing others, potentially revolutionizing the transplantation industry and eliminating wait lists for life-saving transplantable organs."

NAI selects its honorees by identifying their impact on the welfare of society, the release reads, and have proven success with their patents, licensing, and commercialization.

NAI Senior Members are active faculty, scientists and administrators from its Member Institutions who have demonstrated remarkable innovation producing technologies that have brought, or aspire to bring, real impact on the welfare of society. They also have proven success in patents, licensing and commercialization.

An individual's nomination for the NAI Senior Member class by its supporting institution is a distinct honor and a significant way for the organization to publicly recognize its innovators on a national level.At their host institutions, Senior Members foster a spirit of innovation, while educating and mentoring the next generation of inventors.

The new class of NAI Senior Members includes representatives from 32 institutions. Texas A&M University has two researchers in the class — Robert Balog, an associate professor in the Department of Electrical and Computer Engineering, and Balakrishna Haridas, a professor of practice in the Department of Biomedical Engineering and executive director for technology commercialization and entrepreneurship for the Texas A&M Engineering Experiment Station.

This latest class of NAI Senior Members represents 32 research universities and government and non-profit research institutes. They are named inventors on over 860 issued U.S. patents. In February, two Houston inventors were named to the inaugural class of senior members.

"NAI Member Institutions support some of the most elite innovators on the horizon. With the NAI Senior Member award distinction, we are recognizing innovators that are rising stars in their fields," says Paul R. Sanberg, NAI president, in the release. "This new class is joining a prolific group of academic visionaries already defining tomorrow."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

5 ways technology is transforming the workplace for people with disabilities

Guest Column

When Camp For All opened its barrier-free gates more than 30 years ago, our founders believed that design could level the playing field for children and adults with challenging illnesses, disabilities, or special needs. Today, that same philosophy is necessary for workplaces across Greater Houston and beyond; only now the ramps and handrails are digital as much as physical, powered by artificial intelligence (AI) and innovation.

Technology has significantly transformed the workplace for individuals with disabilities, making it easier for them to perform their roles with greater efficiency and independence. Tools such as ergonomic workstations, adaptive keyboards, closed captioning, dictation software, screen magnifiers, and robotics help customize the work environment to accommodate various needs. Additionally, advancements in remote work technology have opened the door to broader employment opportunities, reducing physical barriers to participation in the workforce.

Here are five ways that technology turns “reasonable accommodation” into universal enablement and why every employer should take note.

From closed-captioning to real-time conversation

Ten years ago, businesses relied upon human typists and translators to convert conversations and presentations for those with disabilities. Today, AI speech-to-text engines like Microsoft 365’s Live Captions or Google Workspace’s Meet Transcripts render spoken words into on-screen text across 40-plus languages and dialects in milliseconds. This means deaf and hard-of-hearing employees can follow rapid brainstorming sessions without waiting for a post-meeting transcript.

If you are not already using these tools in your workplace, it is easy to start. Most of these services are free or very low-cost, but produce a high return in employee productivity. Individuals with hearing deficiencies can participate in real-time conversations, give feedback, and bring their unique perspectives to the conversation. These tools also enhance productivity for the larger team by providing all employees with a greater flow of ideas, engagement, and recall.

Voice is the new keyboard

Voice assistants like Siri, Alexa, and Windows Voice Access have matured into integrated tools for everyday life and business. They can now handle paragraph-length dictation, code snippets, and complex spreadsheet commands.

Workers with limited dexterity or sight can participate fully in work tasks, which can level the playing field so everyone can succeed and contribute significantly to the workplace. Additionally, voice-assisted technology can help older employees or employees with differing physical needs continue working longer and retain vital organizational knowledge and expertise, contributing to their team's success.

Readability and writing coaches at scale

The new and highly sensitive AI-powered editors, such as GrammarlyGO and Microsoft Editor, flag jargon, suggest plain-language rewrites, and even adjust tone for cognitive accessibility. This can be a game-changer for neurodivergent professionals, including people with dyslexia or ADHD, as they have to use less brain power decoding dense emails and can get help writing responses in their workplace correspondence.

Again, these free or low-cost tools enable all team members to contribute their unique ideas and perspectives when working together to address workplace challenges, better serve clients, and increase productivity.

Alternative text that captures context

Image-recognition models can now draft alt-text beyond “blue shirt on chair.” Tools like Adobe’s Intelligent Captioning or Meta’s Automatic Alt Text describe emotion, action, and even brand context, giving screen-reader users a richer experience.

Employees with blindness or low vision are more likely to navigate online documents, presentations, and requests independently. These technologies also reduce workloads on marketing teams and help them meet accessibility standards without extensive labor and time.

For businesses that want a varied workforce that brings multiple perspectives, these tools give them a power that hasn’t been harnessed before. If employees living with disabilities have more tools at their disposal, they can, in turn, target specific customers in new ways.

Robots and exoskeletons

Many of us remember The Jetsons cartoon show from the 1960s and how far-fetched their housekeeper robot Rosie seemed then. But now, affordable robots and wearable devices to support employees with spinal cord injuries, chronic pain, and disabilities are helping perform repetitive tasks and reducing strain for everyday work tasks.

These devices may revolutionize unemployment to full-time employment opportunities for many individuals. Devices like ABB’s GoFa and Ottobock’s Paexo can help employers reduce injury claims and retain skilled staff; it’s truly a win-win for employees and employers.


The impact is universal

Eight-foot-wide accessible sidewalks, like the ones we have at Camp For All, help wheelchair users, parents pushing a stroller, and travelers rolling luggage. Similarly, AI captions level the playing field for hearing-impaired colleagues, neurodiverse team members, aging professionals, and every employee skimming a meeting on mute. When we treat accessibility as an innovation driver rather than a compliance checklist, we unleash the potential of productivity, loyalty, and creativity throughout our organizations and companies.

Camp For All sees this throughout the year: when design removes barriers, people discover abilities they never knew they had. Let’s bring that spirit into every Houston boardroom and breakroom — because an inclusive workplace isn’t just the right thing, it’s the smart thing.

---

Pat Prior Sorrells is president and CEO of Camp For All, a Texas-based nonprofit organization. Located in Burton, Texas, the 206-acre Camp For Allsite was designed with no barriers for children and adults with special needs to experience the joy of camping and nature. Camp For All collaborates with more than 65 nonprofit organizations across the Greater Houston area and beyond to enable thousands of campers and their families to discover life each year. She speaks regularly on the need for inclusive design in public spaces.

CPRIT grants $22M to bring top cancer researchers to Houston

fresh funding

Several prominent cancer researchers are coming to the Houston area thanks to $22 million in grants recently awarded by the Cancer Prevention and Research Institute of Texas (CPRIT).

The biggest CPRIT recruitment grant — $6 million — went to genetics researcher Jean Gautier. Gautier, a professor of genetics and development at Columbia University’s Institute for Cancer Genetics, is joining the University of Texas MD Anderson Cancer Center to continue his research.

The website for Gautier’s lab at Columbia provides this explanation of his research:

“The main objective of our research is to better understand the molecular mechanisms responsible for the maintenance of genome stability. These controls are lost in cancer, which is characterized by genomic instability.”

Aside from his work as a professor, Gautier is co-leader of the Herbert Irving Comprehensive Cancer Center’s Cancer Genomics and Epigenomics Program at Columbia.

Other recipients of CPRIT recruitment grants include:

  • $2 million to recruit Xun Sun from the Scripps Research Institute to the University of Texas Medical Branch at Galveston.
  • $2 million to recruit Mingqi Han from the University of California, Los Angeles to MD Anderson.
  • $2 million to recruit Matthew Jones from Stanford University to MD Anderson.
  • $2 million to recruit Linna An from the University of Washington to Rice University.
  • $2 million to recruit Alissa Greenwald from the Weizmann Institute of Science to MD Anderson.
  • $2 million to recruit Niladri Sinha from Johns Hopkins University to the Baylor College of Medicine.
  • $2 million for Luigi Perelli to stay at MD Anderson so he can be put on a tenure track and set up a research lab.
  • $2 million for Benjamin Schrank to stay at MD Anderson so he can be put on a tenure track and set up a research lab.

Over $20.2 million in academic research grants were awarded to researchers at:

  • Baylor College of Medicine
  • Houston Methodist Research Institute
  • Rice University
  • Texas Southern University
  • University of Houston
  • University of Texas Health Science Center at Houston
  • University of Texas MD Anderson Cancer Center
  • University of Texas Medical Branch at Galveston

In addition, nearly $4.45 million in cancer prevention grants were awarded to one researcher at the University of Texas Medical Branch at Galveston and another at Texas Southern University.

Also, five Houston businesses benefited from CPRIT grants for product development research:

  • Allterum Therapeutics, $2,999,996
  • CTMC, $1,342,178
  • Instapath, $900,000
  • Prana Surgical, $900,000
  • InformAI, $465,188

“Texas is a national leader in the fight against cancer,” said Kristen Pauling Doyle, CPRIT’s CEO. “We can measure the return on investment from CPRIT grants … not only in the economic benefits flowing from increased financial activity and jobs in the state, but more importantly in the cancers avoided, detected early, and treated successfully. Thanks to the Legislature’s vision, this commitment is saving lives.”

Overall, CPRIT approved 61 grants totaling more than $93 million in this recent round of funding.

The Houston app that makes your commute smoother, greener + more rewarding

Return to Office

As Houstonians transition back to the office, navigating the city’s complex traffic landscape can feel overwhelming. Fortunately, Houston ConnectSmart, a free app designed specifically for the greater Houston area, is here to make that return easier on your schedule, your wallet, and even the planet.

Unlike national navigation apps, ConnectSmart is built with local commuters in mind. It offers features tailored to Houston’s unique traffic patterns, such as real-time alerts about road closures, construction zones, and flooding. The app also integrates live traffic camera feeds and notifies users about adverse weather conditions, helping them adjust their routes efficiently and avoid delays.

ConnectSmart goes beyond basic navigation. It’s the only local app that keeps commuters fully informed with proactive, real-time trip alerts. These alerts tell users exactly when to leave, flag incidents on their routes, and provide alternative paths to ensure the smoothest possible drive. Additionally, through the Tow and Go program, users stranded on eligible freeways can access no-cost towing to a safe location.

For those looking to save money, time, and the planet, ConnectSmart also shines as a carpooling tool.

With its Carpool feature, users can coordinate rides with colleagues or friends, making use of HOV lanes and cutting down on the number of single-occupancy vehicles on the road. Whether you're a driver or a rider, the app allows you to customize your commute by setting pick-up points, schedules, and drop-off locations. If plans change, Trip Protection ensures you won’t be stranded, offering compensation for a backup ride home in the event of a last-minute cancellation.

Carpooling with ConnectSmart doesn’t just ease stress — it also lightens your environmental footprint and reduces the wear and tear on your vehicle. The app even provides real-time parking information for garages, lots, and street spaces, making the end of your commute as hassle-free as the journey itself.

For employers, ConnectSmart offers an Employer Commute Suite that enables organizations to set up private carpool groups for staff. This feature fosters a more connected, sustainable workplace culture and helps businesses support employees in managing their daily commutes.

Whether you're driving solo or looking to share a ride, Houston ConnectSmart brings a smarter, more sustainable way to get around the Bayou City. Download the app for free from the App Store or Google Play, and start your commute with confidence, convenience, and community in mind.

For more information about setting up an Employer Commute Suite, contact ConnectSmart today and take the first step toward transforming how your organization gets to work.