This health tech company has made some significant changes in order to keep up with its growth. Photo via Getty Images

With a new CEO and chief operating officer aboard, Houston-based DataJoint is thinking small in order to go big.

Looking ahead to 2022, DataJoint aims to enable hundreds of smaller projects rather than a handful of mega-projects, CEO Dimitri Yatsenko says. DataJoint develops data management software that empowers collaboration in the neuroscience and artificial intelligence sectors.

"Our strategy is to take the lessons that we have learned over the past four years working with major projects with multi-institutional consortia," Yatsenko says, "and translate them into a platform that thousands of labs can use efficiently to accelerate their research and make it more open and rigorous."

Ahead of that shift, the startup has undergone some significant changes, including two moves in the C-suite.

Yatsenko became CEO in February after stints as vice president of R&D and as president. He co-founded the company as Vathes LLC in 2016. Yatsenko succeeded co-founder Edgar Walker, who had been CEO since May 2020 and was vice president of engineering before that.

In tandem with Yatsenko's ascent to CEO, the company brought aboard Jason Kirkpatrick as COO. Kirkpatrick previously was chief financial officer of Houston-based Darcy Partners, an energy industry advisory firm; chief operating officer and chief financial officer of Houston-based Solid Systems CAD Services (SSCS), an IT services company; and senior vice president of finance and general manager of operations at Houston-based SmartVault Corp., a cloud-based document management company.

"Most of our team are scientists and engineers. Recruiting an experienced business leader was a timely step for us, and Jason's vast leadership experience in the software industry and recurring revenue models added a new dimension to our team," Yatsenko says.

Other recent changes include:

  • Converting from an LLC structure to a C corporation structure to enable founders, employees, and future investors to be granted shares of the company's stock.
  • Shortening the business' name to DataJoint from DataJoint Neuro and recently launching its rebranded website.
  • Moving the company's office from the Texas Medical Center Innovation Institute (TMCx) to the Galleria area. The new space will make room for more employees. Yatsenko says the 12-employee startup plans to increase its headcount to 15 to 20 by the end of this year.

Over the past five years, the company's customer base has expanded to include neuroscience institutions such as Princeton University's Princeton Neuroscience Institute and Columbia University's Zuckerman Institute for Brain Science, as well as University College London and the Norwegian University of Science and Technology. DataJoint's growth has been fueled in large part by grants from the U.S. Defense Advanced Research Projects Agency (DARPA) and the Brain Research Through Advancing Innovative Neurotechnologies (BRAIN) Initiative at the National Institutes of Health (NIH).

"The work we are tackling has our team truly excited about the future, particularly the capabilities being offered to the neuroscience community to understand how the brain forms perceptions and generates behavior," Yatsenko says.

A Houston-based software startup received a multimillion-dollar grant from the National Institutes of Health for its work within neurophysiology. Getty Images

Data science startup based in Houston focus on neuroscience software nabs $3.78M grant

brain game

Armed with a nearly $3.8 million federal grant, a Houston startup aims to boost neuroscience research around the world.

Vathes LLC, a developer of data management software that collaborates with neuroscience research labs in North America and Europe, recently received the $3.78 million grant from the Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative at the National Institutes of Health (NIH). That initiative is part of the National Institute of Neurological Disorders and Stroke.

Vathes says the NIH funding will enable the startup to ramp up its DataJoint Pipelines for Neurophysiology project. The project aims to make open-source software for data science and engineering available to researchers who specialize in neurophysiology, a branch of neuroscience that looks at how the nervous system functions. The pipeline project holds the promise of benefiting research in areas like autism, Alzheimer's disease, and amyotrophic lateral sclerosis (ALS, or Lou Gehrig's disease).

The project's principal investigator is Dimitri Yatsenko, vice president of research and development at Vathes. Technologically speaking, neuroscientists are playing catch-up with their counterparts in fields like astrophysics, genomics, and bioinformatics, according to Yatsenko.

Neuroscience "is undergoing a fast transformation in terms of moving toward much more data-centric, data-intensive, computation-intensive, and collaborative projects," Yatsenko says. This means that neuroscientists are "now finding themselves having to quickly adapt to an environment," he adds, "where they have to share big data and computations with their collaborators in very dynamic settings and perform them in a very fluid way."

Yatsenko says the NIH-funded project will help smaller research groups tap into the technical expertise of larger research labs.

Vathes' DataJoint Neuro platform and services, which help create so-called DataJoint pipelines, enable neuroscientists to streamline, analyze, and visualize complex data. Among its customers are Princeton University's Neuroscience Institute and Columbia University's Zuckerman Institute. The federally funded project will empower smaller labs to capitalize on existing DataJoint pipelines as ready-to-go turnkey packages, Yatsenko says.

In essence, Vathes' technology acts as a translator. Big research labs collect data in databases that can vary by computer language and platform. Through the Vathes setup, that data can be incorporated by a lab of any size into algorithmic, machine learning, and artificial intelligence mechanisms, regardless of the computer language or platform.

Edgar Walker, CEO of Vathes, says this simplifies the construction and use of databases, giving scientists "more room to focus on the logic of their data pipeline rather than on the physical implementation of it."

Founded in 2016, Vathes is housed at the Texas Medical Center's Innovation Institute. It employs 10 people. The startup previously received a $100,000 grant from the U.S. Defense Advanced Research Projects Agency (DARPA).

Yatsenko says the project backed by the $3.78 million NIH grant will propel the startup's growth, as it "gives us a big window of opportunity" to provide tools and services that support the startup's open-source software.

"As the NIH and other funding agencies are shifting a lot of their focus to collaborative projects that are distributed among multiple institutions," Walker says, "we've established a reputation as the company that can facilitate such research, be efficient, and actually be cost-effective as well, and make the projects very smooth."

"We expect to continue to grow this business at the same exponential rate," he adds. "We'll keep our fingers crossed and see how things go."


CEO Edgar Walker (left) and Dimitri Yatsenko, vice president of research and development, lead Houston-based Vathes. Photos courtesy of Vathes

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston researchers develop material to boost AI speed and cut energy use

ai research

A team of researchers at the University of Houston has developed an innovative thin-film material that they believe will make AI devices faster and more energy efficient.

AI data centers consume massive amounts of electricity and use large cooling systems to operate, adding a strain on overall energy consumption.

“AI has made our energy needs explode,” Alamgir Karim, Dow Chair and Welch Foundation Professor at the William A. Brookshire Department of Chemical and Biomolecular Engineering at UH, explained in a news release. “Many AI data centers employ vast cooling systems that consume large amounts of electricity to keep the thousands of servers with integrated circuit chips running optimally at low temperatures to maintain high data processing speed, have shorter response time and extend chip lifetime.”

In a report recently published in ACS Nano, Karim and a team of researchers introduced a specialized two-dimensional thin film dielectric, or electric insulator. The film, which does not store electricity, could be used to replace traditional, heat-generating components in integrated circuit chips, which are essential hardware powering AI.

The thinner film material aims to reduce the significant energy cost and heat produced by the high-performance computing necessary for AI.

Karim and his former doctoral student, Maninderjeet Singh, used Nobel prize-winning organic framework materials to develop the film. Singh, now a postdoctoral researcher at Columbia University, developed the materials during his doctoral training at UH, along with Devin Shaffer, a UH professor of civil engineering, and doctoral student Erin Schroeder.

Their study shows that dielectrics with high permittivity (high-k) store more electrical energy and dissipate more energy as heat than those with low-k materials. Karim focused on low-k materials made from light elements, like carbon, that would allow chips to run cooler and faster.

The team then created new materials with carbon and other light elements, forming covalently bonded sheetlike films with highly porous crystalline structures using a process known as synthetic interfacial polymerization. Then they studied their electronic properties and applications in devices.

According to the report, the film was suitable for high-voltage, high-power devices while maintaining thermal stability at elevated operating temperatures.

“These next-generation materials are expected to boost the performance of AI and conventional electronics devices significantly,” Singh added in the release.

Houston to become 'global leader in brain health' and more innovation news

Top Topics

Editor's note: The most-read Houston innovation news this month is centered around brain health, from the launch of Project Metis to Rice''s new Amyloid Mechanism and Disease Center. Here are the five most popular InnovationMap stories from December 1-15, 2025:

1. Houston institutions launch Project Metis to position region as global leader in brain health

The Rice Brain Institute, UTMB's Moody Brain Health Institute and Memorial Hermann’s comprehensive neurology care department will lead Project Metis. Photo via Unsplash.

Leaders in Houston's health care and innovation sectors have joined the Center for Houston’s Future to launch an initiative that aims to make the Greater Houston Area "the global leader of brain health." The multi-year Project Metis, named after the Greek goddess of wisdom and deep thought, will be led by the newly formed Rice Brain Institute, The University of Texas Medical Branch's Moody Brain Health Institute and Memorial Hermann’s comprehensive neurology care department. The initiative comes on the heels of Texas voters overwhelmingly approving a ballot measure to launch the $3 billion, state-funded Dementia Prevention and Research Institute of Texas (DPRIT). Continue reading.

2.Rice University researchers unveil new model that could sharpen MRI scans

New findings from a team of Rice University researchers could enhance MRI clarity. Photo via Unsplash.

Researchers at Rice University, in collaboration with Oak Ridge National Laboratory, have developed a new model that could lead to sharper imaging and safer diagnostics using magnetic resonance imaging, or MRI. In a study published in The Journal of Chemical Physics, the team of researchers showed how they used the Fokker-Planck equation to better understand how water molecules respond to contrast agents in a process known as “relaxation.” Continue reading.

3. Rice University launches new center to study roots of Alzheimer’s and Parkinson’s

The new Amyloid Mechanism and Disease Center will serve as the neuroscience branch of Rice’s Brain Institute. Photo via Unsplash.

Rice University has launched its new Amyloid Mechanism and Disease Center, which aims to uncover the molecular origins of Alzheimer’s, Parkinson’s and other amyloid-related diseases. The center will bring together Rice faculty in chemistry, biophysics, cell biology and biochemistry to study how protein aggregates called amyloids form, spread and harm brain cells. It will serve as the neuroscience branch of the Rice Brain Institute, which was also recently established. Continue reading.

4. Baylor center receives $10M NIH grant to continue rare disease research

BCM's Center for Precision Medicine Models has received funding that will allow it to study more complex diseases. Photo via Getty Images

Baylor College of Medicine’s Center for Precision Medicine Models has received a $10 million, five-year grant from the National Institutes of Health that will allow it to continue its work studying rare genetic diseases. The Center for Precision Medicine Models creates customized cell, fly and mouse models that mimic specific genetic variations found in patients, helping scientists to better understand how genetic changes cause disease and explore potential treatments. Continue reading.

5. Luxury transportation startup connects Houston with Austin and San Antonio

Shutto is a new option for Houston commuters. Photo courtesy of Shutto

Houston business and leisure travelers have a luxe new way to hop between Texas cities. Transportation startup Shutto has launched luxury van service connecting San Antonio, Austin, and Houston, offering travelers a comfortable alternative to flying or long-haul rideshare. Continue reading.

Texas falls to bottom of national list for AI-related job openings

jobs report

For all the hoopla over AI in the American workforce, Texas’ share of AI-related job openings falls short of every state except Pennsylvania and Florida.

A study by Unit4, a provider of cloud-based enterprise resource planning (ERP) software for businesses, puts Texas at No. 49 among the states with the highest share of AI-focused jobs. Just 9.39 percent of Texas job postings examined by Unit4 mentioned AI.

Behind Texas are No. 49 Pennsylvania (9.24 percent of jobs related to AI) and No. 50 Florida (9.04 percent). One spot ahead of Texas, at No. 47, is California (9.56 percent).

Unit4 notes that Texas’ and Florida’s low rankings show “AI hiring concentration isn’t necessarily tied to population size or GDP.”

“For years, California, Texas, and New York dominated tech hiring, but that’s changing fast. High living costs, remote work culture, and the democratization of AI tools mean smaller states can now compete,” Unit4 spokesperson Mark Baars said in a release.

The No. 1 state is Wyoming, where 20.38 percent of job openings were related to AI. The Cowboy State was followed by Vermont at No. 2 (20.34 percent) and Rhode Island at No. 3 (19.74 percent).

“A company in Wyoming can hire an AI engineer from anywhere, and startups in Vermont can build powerful AI systems without being based in Silicon Valley,” Baars added.

The study analyzed LinkedIn job postings across all 50 states to determine which ones were leading in AI employment. Unit4 came up with percentages by dividing the total number of job postings in a state by the total number of AI-related job postings.

Experts suggest that while states like Texas, California and Florida “have a vast number of total job postings, the sheer volume of non-AI jobs dilutes their AI concentration ratio,” according to Unit4. “Moreover, many major tech firms headquartered in California are outsourcing AI roles to smaller, more affordable markets, creating a redistribution of AI employment opportunities.”