Kïdo Home, a virtual education platform, has launched out of a Houston-area school. Photo via Getty Images

The coronavirus pandemic has spawned an array of digital innovations in education, and one of those innovations has been hatched right here in Houston.

Kïdo, an international network of preschools, recently introduced its first-ever virtual learning platform, with Kïdo's school in Rice Village serving as the U.S. launchpad. The new platform, called Kïdo Home, is offering free trials for parents in the Houston, Austin, and Dallas-Fort Worth areas. Kïdo Home is in the midst of enrolling students nationwide.

The virtual platform in the U.S. rolled out August 7, with classes starting Sept. 1. The Kïdo Home platform already had been up and running in Dubai, Hong Kong, and London, where Kïdo operates brick-and-mortar schools.

Kïdo Home is made up of small-group classes held online and led by trained instructors. Given the massive interruption of in-person education caused by the pandemic, the platform fills a void for 2- to 6-year-olds.

A study conducted this summer by the National Institute for Early Education Research at Rutgers University's Graduate School of Education found U.S. preschoolers were losing two to four months of critical learning due to pandemic-provoked school closures. According to a nationwide survey of parents, nearly three-fourths of American preschoolers had been affected by pandemic shutdowns that started in March. Many parents reported their distance-learning alternatives were lacking, with less than half receiving support for virtual learning within two months of preschool closures.

"Perhaps 10 percent of preschool children received a robust replacement for in-person preschool attendance," Steve Barnett, senior co-director of the Rutgers institute, says in a release.

Kïdo's Rice Village school serves as the U.S. launchpad for the new platform. Photo via kido.school

Adapted from the Kïdo Early Years Program — which blends the Waldorf Steiner, Reggio Emilia, and Montessori methodologies — Kïdo Home is designed to foster imagination, social well-being, motor skills, and creativity in students through its year-long curriculum.

Kïdo Home's key features include interactive touchscreen literacy and math modules, weekly one-on-one sessions with accredited instructors, and monthly home-activity kits covering art, STEM, literacy, and physical development. Those kits complement the online learning components.

Parents receive weekly updates and monthly assessments regarding their child's progress in the virtual program.

"We saw the need to provide a high-quality, affordable, and engaging virtual learning platform months ago when the pandemic was impacting our preschools in Hong Kong," Houston-based Deepanshu Pandita, U.S. CEO of Kïdo, says in a release. "We've conducted in-depth research that showcases the importance of investing in early childhood education, what the right amount of screen time is, and how to keep children engaged remotely."

Kïdo Home's daily two-hour, real-time video lessons eventually will include second-language immersion, just like Kïdo's brick-and-mortar schools do.

The average class ratio for Kïdo Home is around one instructor for every eight students. Minimal to no parental support is required during these classes. The program costs $350 a month.

Kïdo operates brick-and-mortar locations in Houston, Austin, Hong Kong, Dubai, and London, all of which are open. The Houston school, Kïdo's first in the U.S., debuted in May. The Austin location opened in July. Although a free trial of the virtual platform is available in Dallas-Fort Worth, Kïdo doesn't have a school there.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

UH receives $2.6M gift to support opioid addiction research and treatment

drug research

The estate of Dr. William A. Gibson has granted the University of Houston a $2.6 million gift to support and expand its opioid addiction research, including the development of a fentanyl vaccine that could block the drug's ability to enter the brain.

The gift builds upon a previous donation from the Gibson estate that honored the scientist’s late son Michael, who died from drug addiction in 2019. The original donation established the Michael C. Gibson Addiction Research Program in UH's department of psychology. The latest donation will establish the Michael Conner Gibson Endowed Professorship in Psychology and the Michael Conner Gibson Research Endowment in the College of Liberal Arts and Social Sciences.

“This incredibly generous gift will accelerate UH’s addiction research program and advance new approaches to treatment,” Daniel O’Connor, dean of the College of Liberal Arts and Social Sciences, said in a news release.

The Michael C. Gibson Addiction Research Program is led by UH professor of psychology Therese Kosten and Colin Haile, a founding member of the UH Drug Discovery Institute. Currently, the program produces high-profile drug research, including the fentanyl vaccine.

According to UH, the vaccine can eliminate the drug’s “high” and could have major implications for the nation’s opioid epidemic, as research reveals Opioid Use Disorder (OUD) is treatable.

The endowed professorship is combined with a one-to-one match from the Aspire Fund Challenge, a $50 million grant program established in 2019 by an anonymous donor. UH says the program has helped the university increase its number of endowed chairs and professorships, including this new position in the department of psychology.

“Our future discoveries will forever honor the memory of Michael Conner Gibson and the Gibson family,” O’Connor added in the release. “And I expect that the work supported by these endowments will eventually save many thousands of lives.”

CenterPoint and partners launch AI initiative to stabilize the power grid

AI infrastructure

Houston-based utility company CenterPoint Energy is one of the founding partners of a new AI infrastructure initiative called Chain Reaction.

Software companies NVIDIA and Palantir have joined CenterPoint in forming Chain Reaction, which is aimed at speeding up AI buildouts for energy producers and distributors, data centers and infrastructure builders. Among the initiative’s goals are to stabilize and expand the power grid to meet growing demand from data centers, and to design and develop large data centers that can support AI activity.

“The energy infrastructure buildout is the industrial challenge of our generation,” Tristan Gruska, Palantir’s head of energy and infrastructure, says in a news release. “But the software that the sector relies on was not built for this moment. We have spent years quietly deploying systems that keep power plants running and grids reliable. Chain Reaction is the result of building from the ground up for the demands of AI.”

CenterPoint serves about 7 million customers in Texas, Indiana, Minnesota and Ohio. After Hurricane Beryl struck Houston in July 2024, CenterPoint committed to building a resilient power grid for the region and chose Palantir as its “software backbone.”

“Never before have technology and energy been so intertwined in determining the future course of American innovation, commercial growth, and economic security,” Jason Wells, chairman, president and CEO of CenterPoint, added in the release.

In November, the utility company got the go-ahead from the Public Utility Commission of Texas for a $2.9 billion upgrade of its Houston-area power grid. CenterPoint serves 2.9 million customers in a 12-county territory anchored by Houston.

A month earlier, CenterPoint launched a $65 billion, 10-year capital improvement plan to support rising demand for power across all of its service territories.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.

Houston researchers develop material to boost AI speed and cut energy use

ai research

A team of researchers at the University of Houston has developed an innovative thin-film material that they believe will make AI devices faster and more energy efficient.

AI data centers consume massive amounts of electricity and use large cooling systems to operate, adding a strain on overall energy consumption.

“AI has made our energy needs explode,” Alamgir Karim, Dow Chair and Welch Foundation Professor at the William A. Brookshire Department of Chemical and Biomolecular Engineering at UH, explained in a news release. “Many AI data centers employ vast cooling systems that consume large amounts of electricity to keep the thousands of servers with integrated circuit chips running optimally at low temperatures to maintain high data processing speed, have shorter response time and extend chip lifetime.”

In a report recently published in ACS Nano, Karim and a team of researchers introduced a specialized two-dimensional thin film dielectric, or electric insulator. The film, which does not store electricity, could be used to replace traditional, heat-generating components in integrated circuit chips, which are essential hardware powering AI.

The thinner film material aims to reduce the significant energy cost and heat produced by the high-performance computing necessary for AI.

Karim and his former doctoral student, Maninderjeet Singh, used Nobel prize-winning organic framework materials to develop the film. Singh, now a postdoctoral researcher at Columbia University, developed the materials during his doctoral training at UH, along with Devin Shaffer, a UH professor of civil engineering, and doctoral student Erin Schroeder.

Their study shows that dielectrics with high permittivity (high-k) store more electrical energy and dissipate more energy as heat than those with low-k materials. Karim focused on low-k materials made from light elements, like carbon, that would allow chips to run cooler and faster.

The team then created new materials with carbon and other light elements, forming covalently bonded sheetlike films with highly porous crystalline structures using a process known as synthetic interfacial polymerization. Then they studied their electronic properties and applications in devices.

According to the report, the film was suitable for high-voltage, high-power devices while maintaining thermal stability at elevated operating temperatures.

“These next-generation materials are expected to boost the performance of AI and conventional electronics devices significantly,” Singh added in the release.