The second cohort of The Ion Smart and Resilient Cities Accelerator hosted a day full of thought leadership and startup pitches. Photo by Shobeir Ansari, Getty Images

In light of COVID-19, it is more relevant than ever to discuss and support startups with sustainability and resiliency in mind. At The Ion Smart and Resilient Cities Cohort 2 Demo Day, a virtual audience was reminded of that.

"So, 2020 has certainly been a year of unprecedented uncertainty and change for Houston, for Texas, for our country, and for our world," says Christine Galib, director of the accelerator. "The past few months in particular have been especially difficult as the global pandemic and civil unrest continue to spotlight systemic and structural scars on the face of humanity."

The virtual event was streamed on July 1 and hosted several thought leaders and presenters before concluding with pitches from four of the cohort companies.

"Through it all, and in a virtual world, Cohort 2 startups, the mentors, and our Ion team have been the change we wish to see in the world," Galib continues. "For these startups, failure is simply not an option — and neither is going at it alone."

Earlier this year, Galib announced the second cohort would be focused on solutions for Houston's air quality, water purification, and other cleantech needs. The program, backed by Intel, Microsoft, and TX/RX, launched on Earth Day and commenced shortly after. Cohort 3 is expected later this year.

Here are the four companies that pitched and the problems they are trying to solve.

Re:3D

re:3D was founded just down the street from NASA's Johnson Space Center to address the need for a mid-market 3D printing solution. The Houston-based startup also wanted to create their 3D printer that operates on recycled plastics in order to prevent excess waste.

"Where some see trash, we see opportunity," Charlotte Craff, community liaison at Re:3D says in her presentation.

Re:3D's clients can get their hands on their own Gigabot for less than $10,000, and the printer uses pellets and flakes from recycled plastics —not filament — to print new designs. Clients are also supported by the company with design software and training.

"We can help the city of Houston help meet its climate action and resilient city goals by transforming the way people think about recycling," Craff says about Re:3D's future partnerships with the city.

Water Lens

While two-thirds of the world is covered in water, only 0.7 percent is drinkable. And of that fresh water, 92 percent of it is used in agricultural and industrial settings. This is how Keith Cole, CEO and founder of Water Lens, set the scene for his presentation.

Water Lens, which is based in Houston with a lab located in Austin, wants to solve the problem of cities and countries running out of fresh, drinkable water by equipping huge water-using companies with a water testing tool.

"We've developed a system to let anyone test any water literally anywhere in the world," Cole says, citing clients like ExxonMobil, Shell, and Halliburton.

S2G Energy

S2G Energy, based in Mexico, is focused on optimizing energy management in order to digitize, empower, and unlock potential for cost-saving efforts and technology.

In his pitch, Geronimo Martinez, founder of S2G Energy, points out that restaurants, commercial buildings, and other adjacent industries can save money by implementing energy management solutions that come out of S2G Energy's expertise. In Mexico, Martinez says, clients include the top two restaurant chains that — especially during COVID-19 — need optimization and cost saving now more than ever.

Eigen Control

A refinery's distillation columns are expensive — their fuel use accounts for 50 of operating costs, says Dean Guma, co-founder and CEO of Houston-based Eigen Control.

Guma explains in his pitch how Eigen Control's technology can plug into existing sensors, model networks based on data, and employ the startup's artificial intelligent technology to reduce carbon emissions and save money on operating costs.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston's Ion District to expand with new research and tech space, The Arc

coming soon

Houston's Ion District is set to expand with the addition of a nearly 200,000-square-foot research and technology facility, The Arc at the Ion District.

Rice Real Estate Company and Lincoln Property Company are expected to break ground on the state-of-the-art facility in Q2 2026 with a completion target set for Q1 2028, according to a news release.

Rice University, the new facility's lead tenant, will occupy almost 30,000 square feet of office and lab space in The Arc, which will share a plaza with the Ion and is intended to "extend the district’s success as a hub for innovative ideas and collaboration." Rice research at The Arc will focus on energy, artificial intelligence, data science, robotics and computational engineering, according to the release.

“The Arc will offer Rice the opportunity to deepen its commitment to fostering world-changing innovation by bringing our leading minds and breakthrough discoveries into direct engagement with Houston’s thriving entrepreneurial ecosystem,” Rice President Reginald DesRoches said in the release. “Working side by side with industry experts and actual end users at the Ion District uniquely positions our faculty and students to form partnerships and collaborations that might not be possible elsewhere.”

Developers of the project are targeting LEED Gold certification by incorporating smart building automation and energy-saving features into The Arc's design. Tenants will have the opportunity to lease flexible floor plans ranging from 28,000 to 31,000 square feet with 15-foot-high ceilings. The property will also feature a gym, an amenity lounge, conference and meeting spaces, outdoor plazas, underground parking and on-site retail and dining.

Preleasing has begun for organizations interested in joining Rice in the building.

“The Arc at the Ion District will be more than a building—it will be a catalyst for the partnerships, innovations and discoveries that will define Houston’s future in science and technology,” Ken Jett, president of Rice Real Estate Company, added in the release. “By expanding our urban innovation ecosystem, The Arc will attract leading organizations and talent to Houston, further strengthening our city’s position as a hub for scientific and entrepreneurial progress.”

Intel Corp. and Rice University sign research access agreement

innovation access

Rice University’s Office of Technology Transfer has signed a subscription agreement with California-based Intel Corp., giving the global company access to Rice’s research portfolio and the opportunity to license select patented innovations.

“By partnering with Intel, we are creating opportunities for our research to make a tangible impact in the technology sector,” Patricia Stepp, assistant vice president for technology transfer, said in a news release.

Intel will pay Rice an annual subscription fee to secure the option to evaluate specified Rice-patented technologies, according to the agreement. If Intel chooses to exercise its option rights, it can obtain a license for each selected technology at a fee.

Rice has been a hub for innovation and technology with initiatives like the Rice Biotech Launch Pad, an accelerator focused on expediting the translation of the university’s health and medical technology; RBL LLC, a biotech venture studio in the Texas Medical Center’s Helix Park dedicated to commercializing lifesaving medical technologies from the Launch Pad; and Rice Nexus, an AI-focused "innovation factory" at the Ion.

The university has also inked partnerships with other tech giants in recent months. Rice's OpenStax, a provider of affordable instructional technologies and one of the world’s largest publishers of open educational resources, partnered with Microsoft this summer. Google Public Sector has also teamed up with Rice to launch the Rice AI Venture Accelerator, or RAVA.

“This agreement exemplifies Rice University’s dedication to fostering innovation and accelerating the commercialization of groundbreaking research,” Stepp added in the news release.

Houston team develops low-cost device to treat infants with life-threatening birth defect

infant innovation

A team of engineers and pediatric surgeons led by Rice University’s Rice360 Institute for Global Health Technologies has developed a cost-effective treatment for infants born with gastroschisis, a congenital condition in which intestines and other organs are developed outside of the body.

The condition can be life-threatening in economically disadvantaged regions without access to equipment.

The Rice-developed device, known as SimpleSilo, is “simple, low-cost and locally manufacturable,” according to the university. It consists of a saline bag, oxygen tubing and a commercially available heat sealer, while mimicking the function of commercial silo bags, which are used in high-income countries to protect exposed organs and gently return them into the abdominal cavity gradually.

Generally, a single-use bag can cost between $200 and $300. The alternatives that exist lack structure and require surgical sewing. This is where the SimpleSilo comes in.

“We focused on keeping the design as simple and functional as possible, while still being affordable,” Vanshika Jhonsa said in a news release. “Our hope is that health care providers around the world can adapt the SimpleSilo to their local supplies and specific needs.”

The study was published in the Journal of Pediatric Surgery, and Jhonsa, its first author, also won the 2023 American Pediatric Surgical Association Innovation Award for the project. She is a recent Rice alumna and is currently a medical student at UTHealth Houston.

Bindi Naik-Mathuria, a pediatric surgeon at UTMB Health, served as the corresponding author of the study. Rice undergraduates Shreya Jindal and Shriya Shah, along with Mary Seifu Tirfie, a current Rice360 Global Health Fellow, also worked on the project.

In laboratory tests, the device demonstrated a fluid leakage rate of just 0.02 milliliters per hour, which is comparable to commercial silo bags, and it withstood repeated disinfection while maintaining its structure. In a simulated in vitro test using cow intestines and a mock abdominal wall, SimpleSilo achieved a 50 percent reduction of the intestines into the simulated cavity over three days, also matching the performance of commercial silo bags. The team plans to conduct a formal clinical trial in East Africa.

“Gastroschisis has one of the biggest survival gaps from high-resource settings to low-resource settings, but it doesn’t have to be this way,” Meaghan Bond, lecturer and senior design engineer at Rice360, added in the news release. “We believe the SimpleSilo can help close the survival gap by making treatment accessible and affordable, even in resource-limited settings.”