This week's roundup of Houston innovators includes Mike Francis of NanoTech Materials, Barbara Burger, and David A. Jaffray of MD Anderson Cancer Center. Photos courtesy

Editor's note: Every week, I introduce you to three Houston innovators to know recently making headlines with news of innovative technology, investment activity, and more. This week's batch includes a one-on-one chat with an energy leader, a founder's latest milestone, and a new high-tech cancer-fighting team.

Mike Francis, CEO and co-founder of NanoTech Materials

NanoTech Materials celebrated its move into a new facility — a 43,000-square-foot space in Katy, Texas, this week. Photo via LinkedIn

A Houston startup has moved into a new space that's more than four times larger than its previous setup — a move that's setting the company up to scale its business.

NanoTech Materials celebrated its move into a new facility — a 43,000-square-foot space in Katy, Texas, this week. The materials science company currently distributes a roof coating that features its novel heat-control technology across the company. Originally founded in a garage, the company has now moved from its 10,000-square-foot space at Halliburton Labs into the larger location to support its growth.

“The new facility allows us to not just focus on the roofing, and that’s growing at a pretty rapid pace, but also stand up different production lines for our next iteration of technologies coming-out," Mike Francis, co-founder and CEO of NanoTech tells InnovationMap. Read more.

Barbara Burger, Houston energy transition leader

Houston energy leader Barbara Burger joins the Houston Innovators Podcast to discuss the energy transition's biggest challenges and her key takeaways from CERAWeek. Photo courtesy

When Barbara Burger moved to Houston a little over a decade ago to lead Chevron Technology Ventures, she wondered why the corporate venture group didn't have much representation from the so-called energy capital of the world.

“I had no companies in my portfolio in CTV from Houston, and I wondered why,” Burger says on the Houston Innovators Podcast.

Much has changed in the ecosystem since then, she says, including growth and development to what the community looks like now.

“There are a few things I’m proud of in the ecosystem here, and one of theme is that it’s a very inclusive ecosystem,” she explains, adding that she means the types of founders — from universities or corporate roles — and the incumbent energy companies. “The worst way to get people to not join a party is to not invite them.”

“No one company or organization is going to solve this. We have to get along,” she continues. “We have to stop thinking that the mode is to compete with each other because the pie is so big and the opportunity is so big to work together — and by and large I do see that happening.” Read more.

David A. Jaffray, director of IDSO and chief technology and digital officer at MD Anderson

MD Anderson’s goal with the new Institute for Data Science in Oncology is to advance collaborative projects that will bring the power of data science to every decision made at the hospital. Photo via mdanderson.org

The University of Texas MD Anderson Cancer Center is one step closer to ending cancer thanks to its new institute that's focused on data science.

MD Anderson’s goal with the new Institute for Data Science in Oncology (IDSO) is to advance collaborative projects that will bring the power of data science to every decision made at the hospital. And now, the IDSO has announced its inaugural cohort of 33 scientists, clinicians, and staff that will bring it to life, joining the already appointed leadership and focus area co-leads.

“By engaging diverse expertise across all of our mission areas, we will enhance the rich and productive data science ecosystem at MD Anderson to deliver transformational impact for patients,” David Jaffray, Ph.D., director of IDSO and chief technology and digital officer at MD Anderson, says. Read more.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston researchers make headway on affordable, sustainable sodium-ion battery

Energy Solutions

A new study by researchers from Rice University’s Department of Materials Science and NanoEngineering, Baylor University and the Indian Institute of Science Education and Research Thiruvananthapuram has introduced a solution that could help develop more affordable and sustainable sodium-ion batteries.

The findings were recently published in the journal Advanced Functional Materials.

The team worked with tiny cone- and disc-shaped carbon materials from oil and gas industry byproducts with a pure graphitic structure. The forms allow for more efficient energy storage with larger sodium and potassium ions, which is a challenge for anodes in battery research. Sodium and potassium are more widely available and cheaper than lithium.

“For years, we’ve known that sodium and potassium are attractive alternatives to lithium,” Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor of Engineering at Rice, said in a news release. “But the challenge has always been finding carbon-based anode materials that can store these larger ions efficiently.”

Lithium-ion batteries traditionally rely on graphite as an anode material. However, traditional graphite structures cannot efficiently store sodium or potassium energy, since the atoms are too big and interactions become too complex to slide in and out of graphite’s layers. The cone and disc structures “offer curvature and spacing that welcome sodium and potassium ions without the need for chemical doping (the process of intentionally adding small amounts of specific atoms or molecules to change its properties) or other artificial modifications,” according to the study.

“This is one of the first clear demonstrations of sodium-ion intercalation in pure graphitic materials with such stability,” Atin Pramanik, first author of the study and a postdoctoral associate in Ajayan’s lab, said in the release. “It challenges the belief that pure graphite can’t work with sodium.”

In lab tests, the carbon cones and discs stored about 230 milliamp-hours of charge per gram (mAh/g) by using sodium ions. They still held 151 mAh/g even after 2,000 fast charging cycles. They also worked with potassium-ion batteries.

“We believe this discovery opens up a new design space for battery anodes,” Ajayan added in the release. “Instead of changing the chemistry, we’re changing the shape, and that’s proving to be just as interesting.”

---

This story originally appeared on EnergyCapitalHTX.com.

FAA demands investigation into SpaceX's out-of-control Starship flight

Out of this world

The Federal Aviation Administration is demanding an accident investigation into the out-of-control Starship flight by SpaceX on May 27.

Tuesday's test flight from Texas lasted longer than the previous two failed demos of the world's biggest and most powerful rocket, which ended in flames over the Atlantic. The latest spacecraft made it halfway around the world to the Indian Ocean, but not before going into a spin and breaking apart.

The FAA said Friday that no injuries or public damage were reported.

The first-stage booster — recycled from an earlier flight — also burst apart while descending over the Gulf of Mexico. But that was the result of deliberately extreme testing approved by the FAA in advance.

All wreckage from both sections of the 403-foot (123-meter) rocket came down within the designated hazard zones, according to the FAA.

The FAA will oversee SpaceX's investigation, which is required before another Starship can launch.

CEO Elon Musk said he wants to pick up the pace of Starship test flights, with the ultimate goal of launching them to Mars. NASA needs Starship as the means of landing astronauts on the moon in the next few years.

TMC med-tech company closes $2.5M series A, plans expansion

fresh funding

Insight Surgery, a United Kingdom-based startup that specializes in surgical technology, has raised $2.5 million in a series A round led by New York City-based life sciences investor Nodenza Venture Partners. The company launched its U.S. business in 2023 with the opening of a cleanroom manufacturing facility at Houston’s Texas Medical Center.

The startup says the investment comes on the heels of the U.S. Food and Drug Administration (FDA) granting clearance to the company’s surgical guides for orthopedic surgery. Insight says the fresh capital will support its U.S. expansion, including one new manufacturing facility at an East Coast hospital and another at a West Coast hospital.

Insight says the investment “will provide surgeons with rapid access to sophisticated tools that improve patient outcomes, reduce risk, and expedite recovery.”

Insight’s proprietary digital platform, EmbedMed, digitizes the surgical planning process and allows the rapid design and manufacturing of patient-specific guides for orthopedic surgery.

“Our mission is to make advanced surgical planning tools accessible and scalable across the U.S. healthcare system,” Insight CEO Henry Pinchbeck said in a news release. “This investment allows us to accelerate our plan to enable every orthopedic surgeon in the U.S. to have easy access to personalized surgical devices within surgically meaningful timelines.”

Ross Morton, managing Partner at Nodenza, says Insight’s “disruptive” technology may enable the company to become “the leader in the personalized surgery market.”

The startup recently entered a strategic partnership with Ricoh USA, a provider of information management and digital services for businesses. It also has forged partnerships with the Hospital for Special Surgery in New York City, University of Chicago Medicine, University of Florida Health and UAB Medicine in Birmingham, Alabama.