Six Houston inventors have been recognized with the highest professional distinction for inventors within academia. Photo via Pexels

The National Academy of Inventors has announced its annual set of NAI Fellows — and six Houstonians make the list of the 164 honorees from 116 research institutions worldwide.

The NAI Fellows Program honors academic inventors "who have demonstrated a spirit of innovation in creating or facilitating outstanding inventions that have made a tangible impact on the quality of life, economic development, and the welfare of society," according to a news release. The appointment is the highest professional distinction for inventors within academia.

The six Houstonians on the list join a group that hold more than 48,000 U.S. patents, which have generated over 13,000 licensed technologies and companies, and created more than one million jobs, per the release. Additionally, $3 trillion in revenue has been generated based on NAI Fellow discoveries.

These are the scientists from Houston organizations:

    • Zhiqiang An, University of Texas Health Science Center at Houston: An is the director of the Texas Therapeutics Institute, a drug discovery program operated by the John P. and Kathrine G. McGovern Medical School at Houston. He's also a professor of molecular medicine and holder of the Robert A. Welch Distinguished University Chair in Chemistry at UTHealth.
    • Alex Ignatiev, University of Houston: Ignatiev served as director of two NASA-supported research and technology development centers at the University of Houston and as Lillie Cranz and Hugh Roy Cullen Professor of Physics, Chemistry, and Electrical and Computer Engineering.
    • David Jaffray, University of Texas MD Anderson Cancer Center: Jaffray was appointed MD Anderson's first-ever chief technology and digital officer in 2019. He oversees MD Anderson’s Information Services division and Information Security department and is a professor of Radiation Physics with a joint appointment in Imaging Physics.
    • Pei-Yong Shi,The University of Texas Medical Branch: Pei-Yong Shi is a professor and John Sealy Distinguished Chair in Innovations in Molecular Biology Department of Biochemistry & Molecular Biology;. He's also the Vice Chair for Innovation and Commercialization.
    • Ganesh Thakur, University of Houston: Thakur is a pioneer in carbon capture, utilization and storage and has a patent on forecasting performance of water injection and enhanced oil recovery. His team is continuing to push the research envelope for CCUS employing world-class lab research, simulation, machine learning and artificial intelligence.
    • Darren Woodside, Texas Heart Institute: Woodside is the Vice President for Research and Director of the Flow Cytometry and Imaging Core at the Texas Heart Institute. His research centers around the role that cell adhesion plays in cardiovascular and autoimmune diseases, and the development of novel means to identify and treat these diseases.
    Ten other Texas-based innovators made the list, including:
    • Sanjay Banerjee, The University of Texas at Austin
    • Thomas Boland, The University of Texas at El Paso
    • Joan Brennecke, The University of Texas at Austin
    • Gerard Cote, Texas A&M University
    • Ananth Dodabalapur, The University of Texas at Austin
    • Holloway (Holly) H. Frost Jr., The University of Texas at Arlington
    • James E. Hubbard, Texas A&M University
    • Yi Lu, University of Texas at Austin
    • Samuel Prien, Texas Tech University
    • Earl E. Swartzlander Jr., The University of Texas at Austin
    This year's class will be inducted at the Fellows Induction Ceremony at the 11th Annual Meeting of the National Academy of Inventors in June in Phoenix, Arizona.

    "The caliber of this year's class of NAI Fellows is outstanding. Each of these individuals are highly-regarded in their respective fields," says Paul R. Sanberg, president of NAI's board of directors, in the release. "The breadth and scope of their discovery is truly staggering. I'm excited not only see their work continue, but also to see their knowledge influence a new era of science, technology, and innovation worldwide."

    Houston researchers are working to provide COVID-19 solutions amid the pandemic. Getty Images

    These 5 Houston-area research institutions have bright minds at work to battle COVID-19

    research roundup

    Since even the early days of COVID-19's existence, researchers all over the world were rallying to find a cure or potential vaccine — which usually take years to make, test, and get approved.

    Houston researchers were among this group to put their thinking caps on to come up with solutions to the many problems of the coronavirus. From the testing of existing drugs to tapping into tech to map the disease, here are some research projects that are happening in Houston and are emerging to fight the pandemic.

    Baylor College of Medicine evaluating potential COVID-fighting drug

    Human Body Organs (Lungs Anatomy)

    Baylor College of Medicine has identified a drug that could potentially help heal COVID-19 patients. Photo via bcm.edu

    While Baylor College of Medicine has professionals attacking COVID-19 from all angles, one recent discovery at BCM includes a new drug for treating COVID-caused pneumonia.

    BCM researchers are looking into Tocilizumab's (TCZ), an immunomodulator drug, effect on patients at Baylor St. Luke's Medical Center and Harris Health System's Ben Taub Hospital.

    "The organ most commonly affected by COVID-19 is the lung, causing pneumonia for some patients and leading to difficulty breathing," says Dr. Ivan O. Rosas, chief of the pulmonary, critical care and sleep medicine section at BCM, in a news release.

    TCZ, which has been used to successfully treat hyperimmune responses in cancer patients being treated with immunotherapy, targets the immune response to the coronavirus. It isn't expected to get rid of the virus, but hopefully will reduce the "cytokine storm," which is described as "the hyper-immune response triggered by the viral pneumonia" in the release.

    The randomized clinical trial is looking to treat 330 participants and estimates completion of enrollment early next month and is sponsored by Genentech, a biotechnology company.

    Texas A&M University leads drug testing

    A Texas A&M University researcher is trying to figure out if an existing vaccine has an effect on COVID-19. Screenshot via youtube.com

    A researcher from Texas A&M University is working with his colleagues on a short-term response to COVID-19. A vaccine, called BDG, has already been deemed safe and used for treatment for bladder cancer. BDG can work to strengthen the immune system.

    "It's not going to prevent people from getting infected," says Dr. Jeffrey D. Cirillo, a Regent's Professor of Microbial Pathogenesis and Immunology at the Texas A&M Health Science Center, in a news release. "This vaccine has the very broad ability to strengthen your immune response. We call it 'trained immunity.'"

    A&M leads the study in partnership with the University of Texas MD Anderson Cancer Center and Baylor College of Medicine in Houston, as well as Harvard University's School of Public Health and Cedars Sinai Medical Center in Los Angeles.

    Texas A&M Chancellor John Sharp last week set aside $2.5 million from the Chancellor's Research Initiative for the study. This has freed up Cirillo's team's time that was previously being used to apply for grants.

    "If there was ever a time to invest in medical research, it is now," Sharp says in the release. "Dr. Cirillo has a head start on a possible coronavirus treatment, and I want to make sure he has what he needs to protect the world from more of the horrible effects of this pandemic."

    Currently, the research team is recruiting 1,800 volunteers for the trial that is already underway in College Station and Houston — with the potential for expansion in Los Angeles and Boston. Medical professionals interested in the trial can contact Gabriel Neal, MD at gneal@tamu.edu or Jeffrey Cirillo, PhD at jdcirillo@tamu.edu or George Udeani, PharmD DSc at udeani@tamu.edu.

    "This could make a huge difference in the next two to three years while the development of a specific vaccine is developed for COVID-19," Cirillo says in the release.

    Rice University is creating a COVID-19 map

    Researchers at Rice University's Center for Research Computing's Spatial Studies Lab have mapped out all cases of COVID-19 across Texas by tapping into public health data. The map, which is accessible at coronavirusintexas.org, also identifies the number of people tested across the state, hospital bed utilization rate, and more.

    The project is led by Farès el-Dahdah, director of Rice's Humanities Research Center. El-Dahdah used open source code made available by ESRI and data from the Texas Department of State Health Services and Definitive Healthcare.

    "Now that the Texas Division of Emergency Management released its own GIS hub, our dashboard will move away from duplicating information in order to correlate other numbers such as those of available beds and the potential for increasing the number of beds in relation to the location of available COVID providers," el-Dahdah says in a press release.

    "We're now adding another layer, which is the number of available nurses," el-Dahdah continues. "Because if this explodes, as a doctor friend recently told me, we could be running out of nurses before running out of beds."


    Texas Heart Institute is making vaccines more effective

    A new compound being developed at Texas Heart Institute could revolutionize the effect of vaccines. Photo via texasheart.org

    Molecular technology coming out of the Texas Heart Institute and 7 HIlls Pharma could make vaccines — like a potential coronavirus vaccine — more effective. The oral integrin activator has been licensed to 7 Hills and is slated to a part of a Phase 1 healthy volunteer study to support solid tumor and infectious disease indications in the fall, according to a press release.

    The program is led by Dr. Peter Vanderslice, director of biology at the Molecular Cardiology Research Laboratory at Texas Heart Institute. The compound was first envisioned to improve stem cell therapy for potential use as an immunotherapeutic for certain cancers.

    "Our research and clinical colleagues are working diligently every day to advance promising discoveries for at risk patients," says Dr. Darren Woodside, co-inventor and vice president for research at the Texas Heart Institute, in the release. "This platform could be an important therapeutic agent for cardiac and cancer patients as well as older individuals at higher risk for infections."

    University of Houston's nanotech health monitor

    UH researchers have developed a pliable, thin material that can monitor changes in temperature. Photo via uh.edu

    While developed prior to the pandemic, nanotechnology out of the University of Houston could be useful in monitoring COVID patients' temperatures. The material, as described in a paper published by ACS Applied Nano Materials, is made up of carbon nanotubes and can indicate slight body temperature changes. It's thin and pliable, making it ideal for a wearable health tech device.

    "Your body can tell you something is wrong before it becomes obvious," says Seamus Curran, a physics professor at the University of Houston and co-author on the paper, in a news release.

    Curran's nanotechnology research with fellow researchers Kang-Shyang Liao and Alexander J. Wang, which also has applications in making particle-blocking face masks, began almost 10 years ago.

    Doris Taylor from the Texas Heart Institute has been named to the National Academy of Inventors.

    Houston inventor receives national recognition for leading innovation

    Leading lady

    A Houston inventor is being recognized for her leadership within cardiovascular regenerative medicine. Doris A. Taylor from the Texas Heart Institute has been named among the National Academy of Inventors' 54 academic inventors to the spring 2019 class of NAI Senior Members.

    Taylor's work involves finding alternatives for the current practices for organ transplants, including the whole organ decellularization/recellularization technologies she developed in 2008.

    "Dr. Taylor's work has revolutionized the field by making it possible to bioengineer scaffolds that effectively mimic natural organs," says Dr. Darren Woodside, Texas Heart Institute's vice president for research, in a news release. "The three U.S. patents she currently holds have spun off 28 international patents, stimulating the worldwide tissue engineering industry. Her current research team is refining these technologies and developing others, potentially revolutionizing the transplantation industry and eliminating wait lists for life-saving transplantable organs."

    NAI selects its honorees by identifying their impact on the welfare of society, the release reads, and have proven success with their patents, licensing, and commercialization.

    NAI Senior Members are active faculty, scientists and administrators from its Member Institutions who have demonstrated remarkable innovation producing technologies that have brought, or aspire to bring, real impact on the welfare of society. They also have proven success in patents, licensing and commercialization.

    An individual's nomination for the NAI Senior Member class by its supporting institution is a distinct honor and a significant way for the organization to publicly recognize its innovators on a national level.At their host institutions, Senior Members foster a spirit of innovation, while educating and mentoring the next generation of inventors.

    The new class of NAI Senior Members includes representatives from 32 institutions. Texas A&M University has two researchers in the class — Robert Balog, an associate professor in the Department of Electrical and Computer Engineering, and Balakrishna Haridas, a professor of practice in the Department of Biomedical Engineering and executive director for technology commercialization and entrepreneurship for the Texas A&M Engineering Experiment Station.

    This latest class of NAI Senior Members represents 32 research universities and government and non-profit research institutes. They are named inventors on over 860 issued U.S. patents. In February, two Houston inventors were named to the inaugural class of senior members.

    "NAI Member Institutions support some of the most elite innovators on the horizon. With the NAI Senior Member award distinction, we are recognizing innovators that are rising stars in their fields," says Paul R. Sanberg, NAI president, in the release. "This new class is joining a prolific group of academic visionaries already defining tomorrow."

    Ad Placement 300x100
    Ad Placement 300x600

    CultureMap Emails are Awesome

    Houston doctor aims to revolutionize hearing aid industry with tiny implant

    small but mighty

    “What is the future of hearing aids?” That’s the question that led to a potential revolution.

    “The current hearing aid market and technology is old, and there are little incremental improvements, but really no significant, radical new ideas, and I like to challenge the status quo,” says Dr. Ron Moses, an ENT specialist and surgeon at Houston Methodist.

    Moses is the creator of NanoEar, which he calls “the world’s smallest hearing aid.” NanoEar is an implantable device that combines the invisibility of a micro-sized tympanostomy tube with more power—and a superior hearing experience—than the best behind-the-ear hearing aid.

    “You put the NanoEar inside of the eardrum in an in-office procedure that takes literally five minutes,” Moses says.

    As Moses explains, because of how the human cochlea is formed, its nerves break down over time. It’s simply an inevitability that if we live long enough, we will need hearing aids.

    “The question is, ‘Are we going to all be satisfied with what exists?’” he asks.

    Moses says that currently, only about 20 percent of patients who need hearing aids have them. That’s because of the combination of the stigma, the expense, and the hassle and discomfort associated with the hearing aids currently available on the market. That leaves 80 percent untapped among a population of 466 million people with hearing impairment, and more to come as our population ages. In a nearly $7 billion global market, that additional 80 percent could mean big money.

    Moses initially patented a version of the invention in 2000, but says that it took finding the right team to incorporate as NanoEar. That took place in 2016, when he joined forces with cofounders Michael Moore and Willem Vermaat, now the company’s president and CFO, respectively. Moore is a mechanical engineer, while Vermaat is a “financial guru;” both are repeat entrepreneurs in the biotech space.

    Today, NanoEar has nine active patents. The company’s technical advisors include “the genius behind developing the brains in this device,” Chris Salthouse; NASA battery engineer Will West; Dutch physicist and audiologist Joris Dirckx; and Daniel Spitz, a third-generation master watchmaker and the original guitarist for the famed metal band Anthrax.

    The NanoEar concept has done proof-of-concept testing on both cadavers at the University of Antwerp and on chinchillas, which are excellent models for human hearing, at Tulane University. As part of the TMC Innovation Institute program in 2017, the NanoEar team met with FDA advisors, who told them that they might be eligible for an expedited pathway to approval.

    Thus far, NanoEar has raised about $900,000 to get its nine patents and perform its proof-of-concept experiments. The next step is to build the prototype, but completing it will take $2.75 million of seed funding.

    Despite the potential for making global change, Moses has said it’s been challenging to raise funds for his innovation.

    “We're hoping to find that group of people or person who may want to hear their children or grandchildren better. They may want to join with others and bring a team of investors to offset that risk, to move this forward, because we already have a world-class team ready to go,” he says.

    To that end, NanoEar has partnered with Austin-based Capital Factory to help with their raise. “I have reached out to their entire network and am getting a lot of interest, a lot of interest,” says Moses. “But in the end, of course, we need the money.”

    It will likely, quite literally, be a sound investment in the future of how we all hear the next generation.

    Houston VC funding surged in Q1 2025 to highest level in years, report says

    by the numbers

    First-quarter funding for Houston-area startups just hit its highest level since 2022, according to the latest PitchBook-NVCA Venture Monitor. But fundraising in subsequent quarters might not be as robust thanks to ongoing economic turmoil, the report warns.

    In the first quarter of 2025, Houston-area startups raised $544.2 million in venture capital from investors, PitchBook-NVCA data shows. That compares with $263.5 million in Q1 2024 and $344.5 million in Q1 2023. For the first quarter of 2022, local startups nabbed $745.5 million in venture capital.

    The Houston-area total for first-quarter VC funding this year fell well short of the sum for the Austin area (more than $3.3 billion) and Dallas-Fort Worth ($696.8 million), according to PitchBook-NVCA data.

    While first-quarter 2025 funding for Houston-area startups got a boost, the number of VC deals declined versus the first quarters of 2024, 2023 and 2022. The PitchBook-NVCA Monitor reported 37 local VC deals in this year’s first quarter, compared with 45 during the same period in 2024, 53 in 2023, and 57 in 2022.

    The PitchBook-NVCA report indicates fundraising figures for the Houston area, the Austin area, Dallas-Fort Worth and other markets might shrink in upcoming quarters.

    “Should the latest iteration of tariffs stand, we expect significant pressure on fundraising and dealmaking in the near term as investors sit on the sidelines and wait for signs of market stabilization,” the report says.

    Due to new trade tariffs and policy shifts, the chances of an upcoming rebound in the VC market have likely faded, says Nizar Tarhuni, executive vice president of research and market intelligence at PitchBook.

    “These impacts amplify economic uncertainty and could further disrupt the private markets by complicating investment decisions, supply chains, exit windows, and portfolio strategies,” Tarhuni says. “While this may eventually lead to new domestic investment and create opportunities, the overall environment is facing volatility, hesitation, and structural change.”