Six Houston inventors have been recognized with the highest professional distinction for inventors within academia. Photo via Pexels

The National Academy of Inventors has announced its annual set of NAI Fellows — and six Houstonians make the list of the 164 honorees from 116 research institutions worldwide.

The NAI Fellows Program honors academic inventors "who have demonstrated a spirit of innovation in creating or facilitating outstanding inventions that have made a tangible impact on the quality of life, economic development, and the welfare of society," according to a news release. The appointment is the highest professional distinction for inventors within academia.

The six Houstonians on the list join a group that hold more than 48,000 U.S. patents, which have generated over 13,000 licensed technologies and companies, and created more than one million jobs, per the release. Additionally, $3 trillion in revenue has been generated based on NAI Fellow discoveries.

These are the scientists from Houston organizations:

    • Zhiqiang An, University of Texas Health Science Center at Houston: An is the director of the Texas Therapeutics Institute, a drug discovery program operated by the John P. and Kathrine G. McGovern Medical School at Houston. He's also a professor of molecular medicine and holder of the Robert A. Welch Distinguished University Chair in Chemistry at UTHealth.
    • Alex Ignatiev, University of Houston: Ignatiev served as director of two NASA-supported research and technology development centers at the University of Houston and as Lillie Cranz and Hugh Roy Cullen Professor of Physics, Chemistry, and Electrical and Computer Engineering.
    • David Jaffray, University of Texas MD Anderson Cancer Center: Jaffray was appointed MD Anderson's first-ever chief technology and digital officer in 2019. He oversees MD Anderson’s Information Services division and Information Security department and is a professor of Radiation Physics with a joint appointment in Imaging Physics.
    • Pei-Yong Shi,The University of Texas Medical Branch: Pei-Yong Shi is a professor and John Sealy Distinguished Chair in Innovations in Molecular Biology Department of Biochemistry & Molecular Biology;. He's also the Vice Chair for Innovation and Commercialization.
    • Ganesh Thakur, University of Houston: Thakur is a pioneer in carbon capture, utilization and storage and has a patent on forecasting performance of water injection and enhanced oil recovery. His team is continuing to push the research envelope for CCUS employing world-class lab research, simulation, machine learning and artificial intelligence.
    • Darren Woodside, Texas Heart Institute: Woodside is the Vice President for Research and Director of the Flow Cytometry and Imaging Core at the Texas Heart Institute. His research centers around the role that cell adhesion plays in cardiovascular and autoimmune diseases, and the development of novel means to identify and treat these diseases.
    Ten other Texas-based innovators made the list, including:
    • Sanjay Banerjee, The University of Texas at Austin
    • Thomas Boland, The University of Texas at El Paso
    • Joan Brennecke, The University of Texas at Austin
    • Gerard Cote, Texas A&M University
    • Ananth Dodabalapur, The University of Texas at Austin
    • Holloway (Holly) H. Frost Jr., The University of Texas at Arlington
    • James E. Hubbard, Texas A&M University
    • Yi Lu, University of Texas at Austin
    • Samuel Prien, Texas Tech University
    • Earl E. Swartzlander Jr., The University of Texas at Austin
    This year's class will be inducted at the Fellows Induction Ceremony at the 11th Annual Meeting of the National Academy of Inventors in June in Phoenix, Arizona.

    "The caliber of this year's class of NAI Fellows is outstanding. Each of these individuals are highly-regarded in their respective fields," says Paul R. Sanberg, president of NAI's board of directors, in the release. "The breadth and scope of their discovery is truly staggering. I'm excited not only see their work continue, but also to see their knowledge influence a new era of science, technology, and innovation worldwide."

    Houston researchers are working to provide COVID-19 solutions amid the pandemic. Getty Images

    These 5 Houston-area research institutions have bright minds at work to battle COVID-19

    research roundup

    Since even the early days of COVID-19's existence, researchers all over the world were rallying to find a cure or potential vaccine — which usually take years to make, test, and get approved.

    Houston researchers were among this group to put their thinking caps on to come up with solutions to the many problems of the coronavirus. From the testing of existing drugs to tapping into tech to map the disease, here are some research projects that are happening in Houston and are emerging to fight the pandemic.

    Baylor College of Medicine evaluating potential COVID-fighting drug

    Human Body Organs (Lungs Anatomy)

    Baylor College of Medicine has identified a drug that could potentially help heal COVID-19 patients. Photo via bcm.edu

    While Baylor College of Medicine has professionals attacking COVID-19 from all angles, one recent discovery at BCM includes a new drug for treating COVID-caused pneumonia.

    BCM researchers are looking into Tocilizumab's (TCZ), an immunomodulator drug, effect on patients at Baylor St. Luke's Medical Center and Harris Health System's Ben Taub Hospital.

    "The organ most commonly affected by COVID-19 is the lung, causing pneumonia for some patients and leading to difficulty breathing," says Dr. Ivan O. Rosas, chief of the pulmonary, critical care and sleep medicine section at BCM, in a news release.

    TCZ, which has been used to successfully treat hyperimmune responses in cancer patients being treated with immunotherapy, targets the immune response to the coronavirus. It isn't expected to get rid of the virus, but hopefully will reduce the "cytokine storm," which is described as "the hyper-immune response triggered by the viral pneumonia" in the release.

    The randomized clinical trial is looking to treat 330 participants and estimates completion of enrollment early next month and is sponsored by Genentech, a biotechnology company.

    Texas A&M University leads drug testing

    A Texas A&M University researcher is trying to figure out if an existing vaccine has an effect on COVID-19. Screenshot via youtube.com

    A researcher from Texas A&M University is working with his colleagues on a short-term response to COVID-19. A vaccine, called BDG, has already been deemed safe and used for treatment for bladder cancer. BDG can work to strengthen the immune system.

    "It's not going to prevent people from getting infected," says Dr. Jeffrey D. Cirillo, a Regent's Professor of Microbial Pathogenesis and Immunology at the Texas A&M Health Science Center, in a news release. "This vaccine has the very broad ability to strengthen your immune response. We call it 'trained immunity.'"

    A&M leads the study in partnership with the University of Texas MD Anderson Cancer Center and Baylor College of Medicine in Houston, as well as Harvard University's School of Public Health and Cedars Sinai Medical Center in Los Angeles.

    Texas A&M Chancellor John Sharp last week set aside $2.5 million from the Chancellor's Research Initiative for the study. This has freed up Cirillo's team's time that was previously being used to apply for grants.

    "If there was ever a time to invest in medical research, it is now," Sharp says in the release. "Dr. Cirillo has a head start on a possible coronavirus treatment, and I want to make sure he has what he needs to protect the world from more of the horrible effects of this pandemic."

    Currently, the research team is recruiting 1,800 volunteers for the trial that is already underway in College Station and Houston — with the potential for expansion in Los Angeles and Boston. Medical professionals interested in the trial can contact Gabriel Neal, MD at gneal@tamu.edu or Jeffrey Cirillo, PhD at jdcirillo@tamu.edu or George Udeani, PharmD DSc at udeani@tamu.edu.

    "This could make a huge difference in the next two to three years while the development of a specific vaccine is developed for COVID-19," Cirillo says in the release.

    Rice University is creating a COVID-19 map

    Researchers at Rice University's Center for Research Computing's Spatial Studies Lab have mapped out all cases of COVID-19 across Texas by tapping into public health data. The map, which is accessible at coronavirusintexas.org, also identifies the number of people tested across the state, hospital bed utilization rate, and more.

    The project is led by Farès el-Dahdah, director of Rice's Humanities Research Center. El-Dahdah used open source code made available by ESRI and data from the Texas Department of State Health Services and Definitive Healthcare.

    "Now that the Texas Division of Emergency Management released its own GIS hub, our dashboard will move away from duplicating information in order to correlate other numbers such as those of available beds and the potential for increasing the number of beds in relation to the location of available COVID providers," el-Dahdah says in a press release.

    "We're now adding another layer, which is the number of available nurses," el-Dahdah continues. "Because if this explodes, as a doctor friend recently told me, we could be running out of nurses before running out of beds."


    Texas Heart Institute is making vaccines more effective

    A new compound being developed at Texas Heart Institute could revolutionize the effect of vaccines. Photo via texasheart.org

    Molecular technology coming out of the Texas Heart Institute and 7 HIlls Pharma could make vaccines — like a potential coronavirus vaccine — more effective. The oral integrin activator has been licensed to 7 Hills and is slated to a part of a Phase 1 healthy volunteer study to support solid tumor and infectious disease indications in the fall, according to a press release.

    The program is led by Dr. Peter Vanderslice, director of biology at the Molecular Cardiology Research Laboratory at Texas Heart Institute. The compound was first envisioned to improve stem cell therapy for potential use as an immunotherapeutic for certain cancers.

    "Our research and clinical colleagues are working diligently every day to advance promising discoveries for at risk patients," says Dr. Darren Woodside, co-inventor and vice president for research at the Texas Heart Institute, in the release. "This platform could be an important therapeutic agent for cardiac and cancer patients as well as older individuals at higher risk for infections."

    University of Houston's nanotech health monitor

    UH researchers have developed a pliable, thin material that can monitor changes in temperature. Photo via uh.edu

    While developed prior to the pandemic, nanotechnology out of the University of Houston could be useful in monitoring COVID patients' temperatures. The material, as described in a paper published by ACS Applied Nano Materials, is made up of carbon nanotubes and can indicate slight body temperature changes. It's thin and pliable, making it ideal for a wearable health tech device.

    "Your body can tell you something is wrong before it becomes obvious," says Seamus Curran, a physics professor at the University of Houston and co-author on the paper, in a news release.

    Curran's nanotechnology research with fellow researchers Kang-Shyang Liao and Alexander J. Wang, which also has applications in making particle-blocking face masks, began almost 10 years ago.

    Doris Taylor from the Texas Heart Institute has been named to the National Academy of Inventors.

    Houston inventor receives national recognition for leading innovation

    Leading lady

    A Houston inventor is being recognized for her leadership within cardiovascular regenerative medicine. Doris A. Taylor from the Texas Heart Institute has been named among the National Academy of Inventors' 54 academic inventors to the spring 2019 class of NAI Senior Members.

    Taylor's work involves finding alternatives for the current practices for organ transplants, including the whole organ decellularization/recellularization technologies she developed in 2008.

    "Dr. Taylor's work has revolutionized the field by making it possible to bioengineer scaffolds that effectively mimic natural organs," says Dr. Darren Woodside, Texas Heart Institute's vice president for research, in a news release. "The three U.S. patents she currently holds have spun off 28 international patents, stimulating the worldwide tissue engineering industry. Her current research team is refining these technologies and developing others, potentially revolutionizing the transplantation industry and eliminating wait lists for life-saving transplantable organs."

    NAI selects its honorees by identifying their impact on the welfare of society, the release reads, and have proven success with their patents, licensing, and commercialization.

    NAI Senior Members are active faculty, scientists and administrators from its Member Institutions who have demonstrated remarkable innovation producing technologies that have brought, or aspire to bring, real impact on the welfare of society. They also have proven success in patents, licensing and commercialization.

    An individual's nomination for the NAI Senior Member class by its supporting institution is a distinct honor and a significant way for the organization to publicly recognize its innovators on a national level.At their host institutions, Senior Members foster a spirit of innovation, while educating and mentoring the next generation of inventors.

    The new class of NAI Senior Members includes representatives from 32 institutions. Texas A&M University has two researchers in the class — Robert Balog, an associate professor in the Department of Electrical and Computer Engineering, and Balakrishna Haridas, a professor of practice in the Department of Biomedical Engineering and executive director for technology commercialization and entrepreneurship for the Texas A&M Engineering Experiment Station.

    This latest class of NAI Senior Members represents 32 research universities and government and non-profit research institutes. They are named inventors on over 860 issued U.S. patents. In February, two Houston inventors were named to the inaugural class of senior members.

    "NAI Member Institutions support some of the most elite innovators on the horizon. With the NAI Senior Member award distinction, we are recognizing innovators that are rising stars in their fields," says Paul R. Sanberg, NAI president, in the release. "This new class is joining a prolific group of academic visionaries already defining tomorrow."

    Ad Placement 300x100
    Ad Placement 300x600

    CultureMap Emails are Awesome

    Houston research breakthrough could pave way for next-gen superconductors

    Quantum Breakthrough

    A study from researchers at Rice University, published in Nature Communications, could lead to future advances in superconductors with the potential to transform energy use.

    The study revealed that electrons in strange metals, which exhibit unusual resistance to electricity and behave strangely at low temperatures, become more entangled at a specific tipping point, shedding new light on these materials.

    A team led by Rice’s Qimiao Si, the Harry C. and Olga K. Wiess Professor of Physics and Astronomy, used quantum Fisher information (QFI), a concept from quantum metrology, to measure how electron interactions evolve under extreme conditions. The research team also included Rice’s Yuan Fang, Yiming Wang, Mounica Mahankali and Lei Chen along with Haoyu Hu of the Donostia International Physics Center and Silke Paschen of the Vienna University of Technology. Their work showed that the quantum phenomenon of electron entanglement peaks at a quantum critical point, which is the transition between two states of matter.

    “Our findings reveal that strange metals exhibit a unique entanglement pattern, which offers a new lens to understand their exotic behavior,” Si said in a news release. “By leveraging quantum information theory, we are uncovering deep quantum correlations that were previously inaccessible.”

    The researchers examined a theoretical framework known as the Kondo lattice, which explains how magnetic moments interact with surrounding electrons. At a critical transition point, these interactions intensify to the extent that the quasiparticles—key to understanding electrical behavior—disappear. Using QFI, the team traced this loss of quasiparticles to the growing entanglement of electron spins, which peaks precisely at the quantum critical point.

    In terms of future use, the materials share a close connection with high-temperature superconductors, which have the potential to transmit electricity without energy loss, according to the researchers. By unblocking their properties, researchers believe this could revolutionize power grids and make energy transmission more efficient.

    The team also found that quantum information tools can be applied to other “exotic materials” and quantum technologies.

    “By integrating quantum information science with condensed matter physics, we are pivoting in a new direction in materials research,” Si said in the release.

    ---

    This article originally appeared on our sister site, EnergyCapitalHTX.com.

    Houston humanoid robotics startup inks new deal to deploy its rugged robots

    big deal

    Houston-based Persona AI announced the expansion of its operations at the Ion and a major milestone in deploying its humanoid robots.

    The company will establish a state-of-the-art development center in the prominent corner suite on the first floor of the Ion, and is slated to begin expansion in June.

    “We chose the Ion because it’s more than just a building — it’s a thriving innovation ecosystem,” CEO Nicolaus Radford said in a news release. “This is where Houston’s tech future is being built. It’s a convergence point for the people, energy, and ideas that power our mission to redefine human-machine collaboration. For an industrial, AI-driven robotics company, there’s no better place to scale than in the heart of Houston.”

    Persona AI’s new development center will be located in the suite utilized by the Ion Prototyping Lab, managed by TXRX Labs. The IPL will transition its operations to the expanded TXRX facility in the East End Maker Hub, which will allow the lab to grow its team and meet increased demand.

    At the start of the year, Persona AI closed $25 million in pre-seed funding. Earlier this month, the company announced a memorandum of understanding with HD Korea Shipbuilding & Offshore Engineering, HD Hyundai Robotic, and Korean manufacturing firm Vazil Company to create and deploy humanoid robots for complex welding tasks in shipyards.

    The project will deliver prototype humanoids by the end of 2026, with field testing and full commercial deployment scheduled to begin in 2027.

    "As heavy industry faces growing labor constraints—especially in high-risk trades like welding—the need for rugged, autonomous humanoid robots is more urgent than ever,” Radford added in a separate statement. “This partnership with HD Hyundai and Vazil is more than symbolic—deploying to the shipyard is one of the largest real-world proving grounds for Persona's tough, humanoid robots.”

    Houston climatech co. to lead one of world's largest carbon capture projects

    Big Deal

    Houston-based CO2 utilization company HYCO1 has signed a memorandum of understanding with Malaysia LNG Sdn. Bhd., a subsidiary of Petronas, for a carbon capture project in Malaysia, which includes potential utilization and conversion of 1 million tons of carbon dioxide per year.

    The project will be located in Bintulu in Sarawak, Malaysia, where Malaysia LNG is based, according to a news release. Malaysia LNG will supply HYCO1 with an initial 1 million tons per year of raw CO2 for 20 years starting no later than 2030. The CCU plant is expected to be completed by 2029.

    "This is very exciting for all stakeholders, including HYCO1, MLNG, and Petronas, and will benefit all Malaysians," HYCO1 CEO Gregory Carr said in the release. "We approached Petronas and MLNG in the hopes of helping them solve their decarbonization needs, and we feel honored to collaborate with MLNG to meet their Net Zero Carbon Emissions by 2050.”

    The project will convert CO2 into industrial-grade syngas (a versatile mixture of carbon monoxide and hydrogen) using HYCO1’s proprietary CUBE Technology. According to the company, its CUBE technology converts nearly 100 percent of CO2 feed at commercial scale.

    “Our revolutionary process and catalyst are game changers in decarbonization because not only do we prevent CO2 from being emitted into the atmosphere, but we transform it into highly valuable and usable downstream products,” Carr added in the release.

    As part of the MoU, the companies will conduct a feasibility study evaluating design alternatives to produce low-carbon syngas.

    The companies say the project is expected to “become one of the largest CO2 utilization projects in history.”

    HYCO1 also recently announced that it is providing syngas technology to UBE Corp.'s new EV electrolyte plant in New Orleans. Read more here.

    ---

    This story originally appeared on our sister site, EnergyCapitalHTX.com.