Six Houston inventors have been recognized with the highest professional distinction for inventors within academia. Photo via Pexels

The National Academy of Inventors has announced its annual set of NAI Fellows — and six Houstonians make the list of the 164 honorees from 116 research institutions worldwide.

The NAI Fellows Program honors academic inventors "who have demonstrated a spirit of innovation in creating or facilitating outstanding inventions that have made a tangible impact on the quality of life, economic development, and the welfare of society," according to a news release. The appointment is the highest professional distinction for inventors within academia.

The six Houstonians on the list join a group that hold more than 48,000 U.S. patents, which have generated over 13,000 licensed technologies and companies, and created more than one million jobs, per the release. Additionally, $3 trillion in revenue has been generated based on NAI Fellow discoveries.

These are the scientists from Houston organizations:

    • Zhiqiang An, University of Texas Health Science Center at Houston: An is the director of the Texas Therapeutics Institute, a drug discovery program operated by the John P. and Kathrine G. McGovern Medical School at Houston. He's also a professor of molecular medicine and holder of the Robert A. Welch Distinguished University Chair in Chemistry at UTHealth.
    • Alex Ignatiev, University of Houston: Ignatiev served as director of two NASA-supported research and technology development centers at the University of Houston and as Lillie Cranz and Hugh Roy Cullen Professor of Physics, Chemistry, and Electrical and Computer Engineering.
    • David Jaffray, University of Texas MD Anderson Cancer Center: Jaffray was appointed MD Anderson's first-ever chief technology and digital officer in 2019. He oversees MD Anderson’s Information Services division and Information Security department and is a professor of Radiation Physics with a joint appointment in Imaging Physics.
    • Pei-Yong Shi,The University of Texas Medical Branch: Pei-Yong Shi is a professor and John Sealy Distinguished Chair in Innovations in Molecular Biology Department of Biochemistry & Molecular Biology;. He's also the Vice Chair for Innovation and Commercialization.
    • Ganesh Thakur, University of Houston: Thakur is a pioneer in carbon capture, utilization and storage and has a patent on forecasting performance of water injection and enhanced oil recovery. His team is continuing to push the research envelope for CCUS employing world-class lab research, simulation, machine learning and artificial intelligence.
    • Darren Woodside, Texas Heart Institute: Woodside is the Vice President for Research and Director of the Flow Cytometry and Imaging Core at the Texas Heart Institute. His research centers around the role that cell adhesion plays in cardiovascular and autoimmune diseases, and the development of novel means to identify and treat these diseases.
    Ten other Texas-based innovators made the list, including:
    • Sanjay Banerjee, The University of Texas at Austin
    • Thomas Boland, The University of Texas at El Paso
    • Joan Brennecke, The University of Texas at Austin
    • Gerard Cote, Texas A&M University
    • Ananth Dodabalapur, The University of Texas at Austin
    • Holloway (Holly) H. Frost Jr., The University of Texas at Arlington
    • James E. Hubbard, Texas A&M University
    • Yi Lu, University of Texas at Austin
    • Samuel Prien, Texas Tech University
    • Earl E. Swartzlander Jr., The University of Texas at Austin
    This year's class will be inducted at the Fellows Induction Ceremony at the 11th Annual Meeting of the National Academy of Inventors in June in Phoenix, Arizona.

    "The caliber of this year's class of NAI Fellows is outstanding. Each of these individuals are highly-regarded in their respective fields," says Paul R. Sanberg, president of NAI's board of directors, in the release. "The breadth and scope of their discovery is truly staggering. I'm excited not only see their work continue, but also to see their knowledge influence a new era of science, technology, and innovation worldwide."

    Houston researchers are working to provide COVID-19 solutions amid the pandemic. Getty Images

    These 5 Houston-area research institutions have bright minds at work to battle COVID-19

    research roundup

    Since even the early days of COVID-19's existence, researchers all over the world were rallying to find a cure or potential vaccine — which usually take years to make, test, and get approved.

    Houston researchers were among this group to put their thinking caps on to come up with solutions to the many problems of the coronavirus. From the testing of existing drugs to tapping into tech to map the disease, here are some research projects that are happening in Houston and are emerging to fight the pandemic.

    Baylor College of Medicine evaluating potential COVID-fighting drug

    Human Body Organs (Lungs Anatomy)

    Baylor College of Medicine has identified a drug that could potentially help heal COVID-19 patients. Photo via bcm.edu

    While Baylor College of Medicine has professionals attacking COVID-19 from all angles, one recent discovery at BCM includes a new drug for treating COVID-caused pneumonia.

    BCM researchers are looking into Tocilizumab's (TCZ), an immunomodulator drug, effect on patients at Baylor St. Luke's Medical Center and Harris Health System's Ben Taub Hospital.

    "The organ most commonly affected by COVID-19 is the lung, causing pneumonia for some patients and leading to difficulty breathing," says Dr. Ivan O. Rosas, chief of the pulmonary, critical care and sleep medicine section at BCM, in a news release.

    TCZ, which has been used to successfully treat hyperimmune responses in cancer patients being treated with immunotherapy, targets the immune response to the coronavirus. It isn't expected to get rid of the virus, but hopefully will reduce the "cytokine storm," which is described as "the hyper-immune response triggered by the viral pneumonia" in the release.

    The randomized clinical trial is looking to treat 330 participants and estimates completion of enrollment early next month and is sponsored by Genentech, a biotechnology company.

    Texas A&M University leads drug testing

    A Texas A&M University researcher is trying to figure out if an existing vaccine has an effect on COVID-19. Screenshot via youtube.com

    A researcher from Texas A&M University is working with his colleagues on a short-term response to COVID-19. A vaccine, called BDG, has already been deemed safe and used for treatment for bladder cancer. BDG can work to strengthen the immune system.

    "It's not going to prevent people from getting infected," says Dr. Jeffrey D. Cirillo, a Regent's Professor of Microbial Pathogenesis and Immunology at the Texas A&M Health Science Center, in a news release. "This vaccine has the very broad ability to strengthen your immune response. We call it 'trained immunity.'"

    A&M leads the study in partnership with the University of Texas MD Anderson Cancer Center and Baylor College of Medicine in Houston, as well as Harvard University's School of Public Health and Cedars Sinai Medical Center in Los Angeles.

    Texas A&M Chancellor John Sharp last week set aside $2.5 million from the Chancellor's Research Initiative for the study. This has freed up Cirillo's team's time that was previously being used to apply for grants.

    "If there was ever a time to invest in medical research, it is now," Sharp says in the release. "Dr. Cirillo has a head start on a possible coronavirus treatment, and I want to make sure he has what he needs to protect the world from more of the horrible effects of this pandemic."

    Currently, the research team is recruiting 1,800 volunteers for the trial that is already underway in College Station and Houston — with the potential for expansion in Los Angeles and Boston. Medical professionals interested in the trial can contact Gabriel Neal, MD at gneal@tamu.edu or Jeffrey Cirillo, PhD at jdcirillo@tamu.edu or George Udeani, PharmD DSc at udeani@tamu.edu.

    "This could make a huge difference in the next two to three years while the development of a specific vaccine is developed for COVID-19," Cirillo says in the release.

    Rice University is creating a COVID-19 map

    Researchers at Rice University's Center for Research Computing's Spatial Studies Lab have mapped out all cases of COVID-19 across Texas by tapping into public health data. The map, which is accessible at coronavirusintexas.org, also identifies the number of people tested across the state, hospital bed utilization rate, and more.

    The project is led by Farès el-Dahdah, director of Rice's Humanities Research Center. El-Dahdah used open source code made available by ESRI and data from the Texas Department of State Health Services and Definitive Healthcare.

    "Now that the Texas Division of Emergency Management released its own GIS hub, our dashboard will move away from duplicating information in order to correlate other numbers such as those of available beds and the potential for increasing the number of beds in relation to the location of available COVID providers," el-Dahdah says in a press release.

    "We're now adding another layer, which is the number of available nurses," el-Dahdah continues. "Because if this explodes, as a doctor friend recently told me, we could be running out of nurses before running out of beds."


    Texas Heart Institute is making vaccines more effective

    A new compound being developed at Texas Heart Institute could revolutionize the effect of vaccines. Photo via texasheart.org

    Molecular technology coming out of the Texas Heart Institute and 7 HIlls Pharma could make vaccines — like a potential coronavirus vaccine — more effective. The oral integrin activator has been licensed to 7 Hills and is slated to a part of a Phase 1 healthy volunteer study to support solid tumor and infectious disease indications in the fall, according to a press release.

    The program is led by Dr. Peter Vanderslice, director of biology at the Molecular Cardiology Research Laboratory at Texas Heart Institute. The compound was first envisioned to improve stem cell therapy for potential use as an immunotherapeutic for certain cancers.

    "Our research and clinical colleagues are working diligently every day to advance promising discoveries for at risk patients," says Dr. Darren Woodside, co-inventor and vice president for research at the Texas Heart Institute, in the release. "This platform could be an important therapeutic agent for cardiac and cancer patients as well as older individuals at higher risk for infections."

    University of Houston's nanotech health monitor

    UH researchers have developed a pliable, thin material that can monitor changes in temperature. Photo via uh.edu

    While developed prior to the pandemic, nanotechnology out of the University of Houston could be useful in monitoring COVID patients' temperatures. The material, as described in a paper published by ACS Applied Nano Materials, is made up of carbon nanotubes and can indicate slight body temperature changes. It's thin and pliable, making it ideal for a wearable health tech device.

    "Your body can tell you something is wrong before it becomes obvious," says Seamus Curran, a physics professor at the University of Houston and co-author on the paper, in a news release.

    Curran's nanotechnology research with fellow researchers Kang-Shyang Liao and Alexander J. Wang, which also has applications in making particle-blocking face masks, began almost 10 years ago.

    Doris Taylor from the Texas Heart Institute has been named to the National Academy of Inventors.

    Houston inventor receives national recognition for leading innovation

    Leading lady

    A Houston inventor is being recognized for her leadership within cardiovascular regenerative medicine. Doris A. Taylor from the Texas Heart Institute has been named among the National Academy of Inventors' 54 academic inventors to the spring 2019 class of NAI Senior Members.

    Taylor's work involves finding alternatives for the current practices for organ transplants, including the whole organ decellularization/recellularization technologies she developed in 2008.

    "Dr. Taylor's work has revolutionized the field by making it possible to bioengineer scaffolds that effectively mimic natural organs," says Dr. Darren Woodside, Texas Heart Institute's vice president for research, in a news release. "The three U.S. patents she currently holds have spun off 28 international patents, stimulating the worldwide tissue engineering industry. Her current research team is refining these technologies and developing others, potentially revolutionizing the transplantation industry and eliminating wait lists for life-saving transplantable organs."

    NAI selects its honorees by identifying their impact on the welfare of society, the release reads, and have proven success with their patents, licensing, and commercialization.

    NAI Senior Members are active faculty, scientists and administrators from its Member Institutions who have demonstrated remarkable innovation producing technologies that have brought, or aspire to bring, real impact on the welfare of society. They also have proven success in patents, licensing and commercialization.

    An individual's nomination for the NAI Senior Member class by its supporting institution is a distinct honor and a significant way for the organization to publicly recognize its innovators on a national level.At their host institutions, Senior Members foster a spirit of innovation, while educating and mentoring the next generation of inventors.

    The new class of NAI Senior Members includes representatives from 32 institutions. Texas A&M University has two researchers in the class — Robert Balog, an associate professor in the Department of Electrical and Computer Engineering, and Balakrishna Haridas, a professor of practice in the Department of Biomedical Engineering and executive director for technology commercialization and entrepreneurship for the Texas A&M Engineering Experiment Station.

    This latest class of NAI Senior Members represents 32 research universities and government and non-profit research institutes. They are named inventors on over 860 issued U.S. patents. In February, two Houston inventors were named to the inaugural class of senior members.

    "NAI Member Institutions support some of the most elite innovators on the horizon. With the NAI Senior Member award distinction, we are recognizing innovators that are rising stars in their fields," says Paul R. Sanberg, NAI president, in the release. "This new class is joining a prolific group of academic visionaries already defining tomorrow."

    Ad Placement 300x100
    Ad Placement 300x600

    CultureMap Emails are Awesome

    Houston students develop cost-effective glove to treat Parkinson's symptoms

    smart glove

    Two Rice undergraduate engineering students have developed a non-invasive vibrotactile glove that aims to alleviate the symptoms of Parkinson’s disease through therapeutic vibrations.

    Emmie Casey and Tomi Kuye developed the project with support from the Oshman Engineering Design Kitchen (OEDK) and guidance from its director, Maria Oden, and Rice lecturer Heather Bisesti, according to a news release from the university.

    The team based the design on research from the Peter Tass Lab at Stanford University, which explored how randomized vibratory stimuli delivered to the fingertips could help rewire misfiring neurons in the brain—a key component of Parkinson’s disease.

    Clinical trials from Stanford showed that coordinated reset stimulation from the vibrations helped patients regain motor control and reduced abnormal brain activity. The effects lasted even after users removed the vibrotactile gloves.

    Casey and Kuye set out to replicate the breakthrough at a lower cost. Their prototype replaced the expensive motors used in previous designs with motors found in smartphones that create similar tiny vibrations. They then embedded the motors into each fingertip of a wireless glove.

    “We wanted to take this breakthrough and make it accessible to people who would never be able to afford an expensive medical device,” Casey said in the release. “We set out to design a glove that delivers the same therapeutic vibrations but at a fraction of the cost.”

    Rice’s design also targets the root of the neurological disruption and attempts to retrain the brain. An early prototype was given to a family friend who had an early onset of the disease. According to anecdotal data from Rice, after six months of regularly using the gloves, the user was able to walk unaided.

    “We’re not claiming it’s a cure,” Kuye said in the release. “But if it can give people just a little more control, a little more freedom, that’s life-changing.”

    Casey and Kuye are working to develop a commercial version of the glove priced at $250. They are taking preorders and hope to release 500 pairs of gloves this fall. They've also published an open-source instruction manual online for others who want to try to build their own glove at home. They have also formed a nonprofit and plan to use a sliding scale price model to help users manage the cost.

    “This project exemplifies what we strive for at the OEDK — empowering students to translate cutting-edge research into real-world solutions,” Oden added in the release. “Emmie and Tomi have shown extraordinary initiative and empathy in developing a device that could bring meaningful relief to people living with Parkinson’s, no matter their resources.”

    New Austin tower eclipses Houston landmark as Texas' tallest building

    Tallest in Texas

    Texas officially has a new tallest tower. The title moves from Houston, for the JPMorgan Chase Tower, to Austin, for Waterline at 98 Red River St. The new tower will contain mixed-use spaces including apartments, offices, a hotel, restaurants, and retail. It is scheduled to open in full in 2026.

    Waterline held a "topping out" ceremony in August, when the final beam was added to the top of the tower. It now reaches 74 stories and 1,025 feet — just 23 feet taller than the JPMorgan Chase Tower.

    Waterline height comparison Waterline is now the tallest building in Texas.Graphic courtesy of Lincoln Property Company

    According to a press release, hundreds of construction workers and team project members attended the Waterline ceremony, and more than 4,750 people have worked on it since the project broke ground in 2022. An estimated 875 people were working onsite every day at the busiest time for construction.

    The Waterline site is on a 3.3-acre campus with lots of views of Waller Creek and Lady Bird Lake. The building contains space for 352 luxury apartments, 700,000 square feet of offices, a hotel called 1 Hotel Austin with 251 rooms, and 24,000 square feet of retail stores and restaurants.

    The only space that is open to new tenants already is the office space, with residential soon to follow. The hotel and residential units are expected to open in fall 2026.

    Waterline tower Austin A view from above, shot by drone.Photo courtesy of Lincoln Property Company and Kairoi Residential

    “Seamlessly integrated with Waller Creek, Waterloo Greenway and the hike-and-bike trail around Lady Bird Lake, Waterline will quickly become a top downtown destination and activity center," said Lincoln executive vice president Seth Johnston in a press release. Project improvements will also make it far easier for people to access all of the public amenities in this area from Rainey Street, the new Austin Convention Center, and the rest of the Central Business District."

    ---

    This article originally appeared on CultureMap.com.

    Houston company awarded $2.5B NASA contract to support astronaut health and space missions

    space health

    Houston-based technology and energy solution company KBR has been awarded a $2.5 billion NASA contract to support astronaut health and reduce risks during spaceflight missions.

    Under the terms of the Human Health and Performance Contract 2, KBR will provide support services for several programs, including the Human Research Program, International Space Station Program, Commercial Crew Program, Artemis campaign and others. This will include ensuring crew health, safety, and performance; occupational health services and risk mitigation research for future flights.

    “This contract reinforces KBR’s leadership in human spaceflight operations and highlights our expertise in supporting NASA’s vision for space exploration,” Mark Kavanaugh, KBR president of defense, intel and space, said in a news release.

    The five-year contract will begin Nov. 1 with possible extension option periods that could last through 2035. The total estimated value of the base period plus the optional periods is $3.6 billion, and the majority of the work will be done at NASA’s Johnson Space Center.

    “We’re proud to support NASA’s critical work on long-duration space travel, including the Artemis missions, while contributing to solutions that will help humans live and thrive beyond Earth,” Kavanaugh adde in the news release.

    Recently, KBR and Axiom Space completed three successful crewed underwater tests of the Axiom Extravehicular Mobility Unit (AxEMU) at NASA's Neutral Buoyancy Laboratory (NBL) at Johnson Space Center. The tests were part of an effort to help both companies work to support NASA's return to the Moon, according to a release.

    KBR also landed at No. 3 in a list of Texas businesses on Time and Statista’s new ranking of the country’s best midsize companies.