A team at Rice University is designing wearable technology that can be used for navigation for users with visual and auditory impairments. Photo by Brandon Martin/Rice University

A group of Rice researchers have tapped into the sense of touch to improve how wearable technology can communicate with its user.

Barclay Jumet, a mechanical engineering PhD student at Rice working in the labs of Daniel Preston and Marcia O’Malley, published the findings in the August issue of “Device.” The study outlines the group's new system of haptic accessories that rely heavily on fluidic control over electrical inputs to signal or simulate touch to a wearer. The research was supported by the National Science Foundation, the Rice University Academy of Fellows, and the Gates Millennium Scholars Program.

The accessories include a belt and textile sleeves, which deliver haptic cues like vibration, tapping and squeezing through pressure generated by a lightweight carbon dioxide tank attached to the belt. The sleeve contains up to six quarter-sized pouches that inflate with varying force and frequency, depending on what is being communicated to the wearer.

Marcia O'Malley (from left), Barclay Jumet and Daniel Preston developed a wearable textile device that can deliver complex haptic cues in real time to users on the go. Photo by Brandon Martin/Rice University

The team says the wearables have uses for those with visual and auditory impairments and offer a slimmed-down design compared to other bulky complex haptic wearables. The wearables are also washable and repairable, which gives them more everyday uses.

To test the system's usability, the team guided a user on a mile-long route through Houston, signaling haptic cues for forward, backward, left or right through the devices.

“In the future, this technology could be directly integrated with navigational systems, so that the very textiles making up one’s clothing can tell users which way to go without taxing their already overloaded visual and auditory senses—for instance by needing to consult a map or listen to a virtual assistant,” Jumet said in a release from Rice.

O’Malley, chair of the Department of Mechanical Engineering, said the system could also work in tandem with Cochlear implants and make lip-reading easier for users in noisy environments by directing users to sources of sound.

Jumet also sees uses outside of the medical space.

“Instead of a smart watch with simple vibrational cues, we can now envision a ‘smart shirt’ that gives the sensation of a stroking hand or a soft tap on the torso or arm,” he said in the release. “Movies, games and other forms of entertainment could now incorporate the sense of touch, and virtual reality can be more comfortable for longer periods of time.”


Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

California-based healthcare co. expands to Houston with new bioskills lab

med skills

Axis Research & Technologies, a California-based healthcare innovation solutions and medical research company, has expanded into the Houston area via a new 10,800-square-foot bioskills lab in Shenandoah last month.

The facility includes a main lab that’s configurable into a single space with over 20 stations, two more lab suites for specialized bioskills training, a conference room for presentations and a large multipurpose area.

Medical professionals can simulate a fully functional operating room in the lab for training and education. It also has the capability of handling cadaver specimens.

The company says the new facility aims to serve surgeons, medical device companies, hospitals and research institutions.

Axis was attracted to Houston thanks to the Texas Medical Center and other world-class medical groups, according to a release from the company. The facility in Shenandoah will be near medical facilities in The Woodlands.

“We are thrilled to expand into the Houston market,” Jill Goodwin, COO of Axis, said in a news release. “This new facility was driven by demand from our clients who have expressed a need for a high-quality bioskills lab in Houston. We repeatedly heard this feedback at the most recent American Academy of Orthopaedic Surgeons (AAOS) conference, which reinforced our decision to bring Axis to the region.”

Axis hosted its first lab event at its Houston-area venue on Feb. 22. The facility is currently accepting bookings for medical trainings, research collaborations and use of its bioskills lab.

“Our goal is to create an environment where groundbreaking medical advancements can take place,” Goodwin added in a news release. “Houston is home to one of the largest medical communities in the country, making it a perfect fit for our expansion.”

Axis' other bioskills labs are located in Nasvhille; Irvine, California; and Columbia, Maryland.

Texas institute grants $12M to bring leading cancer researchers to Houston

cha-ching

Rice University has recruited a prominent Swedish cancer researcher thanks to a $6 million grant from the Cancer Prevention and Research Institute of Texas.

It’s among $68 million in research grants recently awarded by the state agency, and six recruitment grants totaling $16 million to bring leading cancer researchers to Texas.

A news release from the Cancer Prevention and Research Institute of Texas (CPRIT) describes Pernilla Wittung-Stafshede of the Chalmers University of Technology in Gothenburg, Sweden, as “an accomplished and highly gifted biophysical scientist tackling complicated biological questions regarding the role of metals and metal dysregulation in various diseases. She pioneered a new research field around the role of metal ions in the folding and function of metalloproteins.”

Metalloproteins account for nearly half of all proteins in biology, according to the National Institutes of Health. They “catalyze some of the most difficult and yet important functions in [nature], such as photosynthesis and water oxidation,” the federal agency says.

Wittung-Stafshede, a professor of chemical biology and life sciences at Chalmers, is a former professor at Rice.

Aside from the money for Wittung-Stafshede, Houston recruitment grants also went to:

  • University of Texas M.D. Anderson Cancer Center: $2 million to recruit Rosalie Griffin of the Mayo Clinic
  • Baylor College of Medicine: $2 million to recruit Dr. Nipun Verma of the Yale University School of Medicine
  • Baylor College of Medicine: $2 million to recruit Xin “Daniel” Gao of Harvard University and the Massachusetts Institute of Technology

In Houston, cancer research grants were given to:

  • Baylor College of Medicine: $7.8 million
  • M.D. Anderson Cancer Center: $20.7 million
  • Rice University: $ 1 million
  • University of Houston: $1.2 million
  • University of Texas Health Science Center at Houston: $4.5 million

“The awards … represent the depth and diversity of CPRIT funding for cancer research in Texas,” says Kristen Doyle, CEO of CPRIT. “These grants develop new approaches to preventing, diagnosing, treating, and surviving cancer for all Texans.”

See the full list of awards here.