The funds were awarded to Han Xiao, a scientist at Rice University.

A Rice University chemist has landed a $2 million grant from the National Institute of Health for his work that aims to reprogram the genetic code and explore the role certain cells play in causing diseases like cancer and neurological disorders.

The funds were awarded to Han Xiao, the Norman Hackerman-Welch Young Investigator, associate professor of chemistry, from the NIH's Maximizing Investigators’ Research Award (MIRA) program, which supports medically focused laboratories.

Xiao will use the five-year grant to develop noncanonical amino acids (ncAAs) with diverse properties to help build proteins, according to a statement from Rice. He and his team will then use the ncAAs to explore the vivo sensors for enzymes involved in posttranslational modifications (PTMs), which play a role in the development of cancers and neurological disorders. Additionally, the team will look to develop a way to detect these enzymes in living organisms in real-time rather than in a lab.

“This innovative approach could revolutionize how we understand and control cellular functions,” Xiao said in the statement.

According to Rice, these developments could have major implications for the way diseases are treated, specifically for epigenetic inhibitors that are used to treat cancer.

Xiao helped lead the charge to launch Rice's new Synthesis X Center this spring. The center, which was born out of informal meetings between Xio's lab and others from the Baylor College of Medicine’s Dan L Duncan Comprehensive Cancer Center at the Baylor College of Medicine, aims to improve cancer outcomes by turning fundamental research into clinical applications.

They will build upon annual retreats, in which investigators can share unpublished findings, and also plan to host a national conference, the first slated for this fall titled "Synthetic Innovations Towards a Cure for Cancer.”

Researchers at the new SynthX Center will aim to turn fundamental research into clinical applications and make precision adjustments to drug properties and molecules. Photo via Rice University

Houston organizations launch collaborative center to boost cancer outcomes

new to HOU

Rice University's new Synthesis X Center officially launched last month to bring together experts in cancer care and chemistry.

The center was born out of what started about seven years ago as informal meetings between Rice chemist Han Xiao's research group and others from the Baylor College of Medicine’s Dan L Duncan Comprehensive Cancer Center at the Baylor College of Medicine. The level of collaboration between the two teams has grown significantly over the years, and monthly meetings now draw about 100 participants from across disciplines, fields and Houston-based organizations, according to a statement from Rice.

Researchers at the new SynthX Center will aim to turn fundamental research into clinical applications and make precision adjustments to drug properties and molecules. It will focus on improving cancer outcomes by looking at an array of factors, including prevention and detection, immunotherapies, the use of artificial intelligence to speed drug discovery and development, and several other topics.

"At Rice, we are strong on the fundamental side of research in organic chemistry, chemical biology, bioengineering and nanomaterials,” Xiao says in the statement. “Starting at the laboratory bench, we can synthesize therapeutic molecules and proteins with atom-level precision, offering immense potential for real-world applications at the bedside ... But the clinicians and fundamental researchers don’t have a lot of time to talk and to exchange ideas, so SynthX wants to serve as the bridge and help make these connections.”

SynthX plans to issue its first merit-based seed grants to teams with representatives from Baylor and Rice this month.

With this recognition from Rice, the teams from Xiao's lab and the TMC will also be able to expand and formalize their programs. They will build upon annual retreats, in which investigators can share unpublished findings, and also plan to host a national conference, the first slated for this fall titled "Synthetic Innovations Towards a Cure for Cancer.”

“I am confident that the SynthX Center will be a great resource for both students and faculty who seek to translate discoveries from fundamental chemical research into medical applications that improve people’s lives,” Thomas Killian, dean of the Wiess School of Natural Sciences, says in the release.

Rice announced that it had invested in four other research centers along with SynthX last month. The other centers include the Center for Coastal Futures and Adaptive Resilience, the Center for Environmental Studies, the Center for Latin American and Latinx Studies and the Rice Center for Nanoscale Imaging Sciences.

Earlier this year, Rice also announced its first-ever recipients of its One Small Step Grant program, funded by its Office of Innovation. The program will provide funding to faculty working on "promising projects with commercial potential," according to the website.

The new tower will be home of the Dan L Duncan Comprehensive Cancer Center. Photo courtesy of Baylor College of Medicine

Pivotal new cancer research tower tops off in the Texas Medical Center

coming soon

Anew structure aimed at greatly expanding medical services and outpatient care to residents of Greater Houston recently topped off.

At an official ceremony attended by VIPs and industry names, Baylor St. Luke's Medical Center toasted the completion of the concrete structure pivotal in the construction of the O'Quinn Medical Tower at the McNair Campus.

This new 12-story O'Quinn Medical Tower at Baylor St. Luke's - McNair Campus will be the new clinical home for the Dan L Duncan Comprehensive Cancer Center, per a release. The center is nationally ranked for cancer care by U.S. News & World Report and is one of only three National Cancer Institute-designated comprehensive cancer centers in Texas. It earned that designation through Baylor College of Medicine.

Additionally, the O'Quinn Medical Tower is part of the expanding McNair Campus. This campus promises more than 400,000 square feet of space to support and provide personalized care to patients and families, including another hospital bed tower and ambulatory care center, press materials describe.

Those familiar with the area will recognize that the campus sits directly adjacent to the planned site of TMC3, a new 37-acre campus that will be located between Old Spanish Trail and Brays Bayou.

"The new O'Quinn Tower and its designation as the clinical home of Baylor's Dan L Duncan Comprehensive Cancer Center will be an important milestones in Baylor's mission," said Dr. Paul Klotman, president, CEO and executive dean of Baylor College of Medicine, in a release. "The McNair Campus is the hub of our clinical activity, and we look forward to the continued expansion."

------

This article originally ran on CultureMap.

A.J. "Jim" Teague received glowing reviews from ex-employees. EnterprisePartnersProducts

Houston energy exec scores well on list of top CEOs at Fortune 100 companies

Best boss

Correction: The original article referenced information from a ranking from Upslide that mistakenly reported Jim Teague's Glassdoor employee approval ratings as 9 percent, rather than his actual approval rating of 96 percent. The corrected story is below.

CEO A.J. "Jim" Teague, of Houston-based pipeline company Enterprise Products Partners LP, has received top marks according to Glassdoor data. Teague receives 96 percent approval rating from employees who've reviewed him on the platform, according to Glassdoor.

The Money Inc. website says Teague, who became CEO in 2016, is working to reconfigure the culture at Enterprise Products Partners. "His goal is to shape that culture so that the company itself can become more popular with the general public," the website notes.

Teague has also received positive reviews locally. In December, the Greater Houston Port Bureau named him its 2020 Maritime Leader of the Year to recognize his support of the Houston Ship Channel.

"Building on the legacy of the late Dan L. Duncan, who started Enterprise in 1968, Teague has remained loyal to the founder's values of hard work, integrity, and perseverance, with an uncompromising commitment to safety," the bureau says in a release.

Fellow Texans also received top marks. As Fortune magazine once observed, Michael Dell's leadership style revolves around "vision, inspiration, curiosity, and ultimately passion." And as it turns out, employees of Round Rock-based Dell Technologies Inc. are equally passionate about their company's chairman and CEO.

According to Glassdoor reviews, Dell has a 97 percent approval rating from employees of Dell Technologies.

In October 2013, Forbes magazine offered a glimpse into how Dell interacts with employees of the tech company he founded in 1984.

After speaking to a group of Dell workers for about 45 minutes, "more than a dozen employees rush forward to have their picture taken with their iconic chief," Forbes wrote, "because they know he'll happily pose — something not many other tech executives would do. He doesn't disappoint. And he leaves them laughing and cheering again after answering a question about what's keeping him up at night. 'I've been sleeping pretty well lately.'"

You might be sleeping pretty well, too, if your net worth were $31.4 billion, making Dell the richest person in Austin and the 18th richest person in the U.S.

Another Fortune 100 company exec, Kelcy Warren, chairman and CEO of Dallas-based pipeline company Energy Transfer Partners, scores highly on Glassdoor as well. Warren's employee rating stands at 97 percent.

The respect paid to Warren by Energy Transfer Partner employees almost certainly stems, at least in part, from his laid-back demeanor. He reportedly favors a "non-hierarchical, collaborative management style."

"For all of his success, Warren remains a small-town sort of guy who likes to have buddies to his Dallas mansion on Wednesdays for beers, shuffleboard, and chain yanking," according to a 2015 article published by the Bloomberg news service.

With a net worth of $4.3 billion, Warren ranks 159th on Forbes' list of the richest Americans.

------

This article originally ran on CultureMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston doctor wins NIH grant to test virtual reality for ICU delirium

Virtual healing

Think of it like a reverse version of The Matrix. A person wakes up in a hospital bed and gets plugged into a virtual reality game world in order to heal.

While it may sound far-fetched, Dr. Hina Faisal, a Houston Methodist critical care specialist in the Department of Surgery, was recently awarded a $242,000 grant from the National Institute of Health to test the effects of VR games on patients coming out of major surgery in the intensive care unit (ICU).

The five-year study will focus on older patients using mental stimulation techniques to reduce incidences of delirium. The award comes courtesy of the National Institute on Aging K76 Paul B. Beeson Emerging Leaders Career Development Award in Aging.

“As the population of older adults continues to grow, the need for effective, scalable interventions to prevent postoperative complications like delirium is more important than ever,” Faisal said in a news release.

ICU delirium is a serious condition that can lead to major complications and even death. Roughly 87 percent of patients who undergo major surgery involving intubation will experience some form of delirium coming out of anesthesia. Causes can range from infection to drug reactions. While many cases are mild, prolonged ICU delirium may prevent a patient from following medical advice or even cause them to hurt themselves.

Using VR games to treat delirium is a rapidly emerging and exciting branch of medicine. Studies show that VR games can help promote mental activity, memory and cognitive function. However, the full benefits are currently unknown as studies have been hampered by small patient populations.

Faisal believes that half of all ICU delirium cases are preventable through VR treatment. Currently, a general lack of knowledge and resources has been holding back the advancement of the treatment.

Hopefully, the work of Faisal in one of the busiest medical cities in the world can alleviate that problem as she spends the next half-decade plugging patients into games to aid in their healing.

Houston scientists develop breakthrough AI-driven process to design, decode genetic circuits

biotech breakthrough

Researchers at Rice University have developed an innovative process that uses artificial intelligence to better understand complex genetic circuits.

A study, published in the journal Nature, shows how the new technique, known as “Combining Long- and Short-range Sequencing to Investigate Genetic Complexity,” or CLASSIC, can generate and test millions of DNA designs at the same time, which, according to Rice.

The work was led by Rice’s Caleb Bashor, deputy director for the Rice Synthetic Biology Institute and member of the Ken Kennedy Institute. Bashor has been working with Kshitij Rai and Ronan O’Connell, co-first authors on the study, on the CLASSIC for over four years, according to a news release.

“Our work is the first demonstration that you can use AI for designing these circuits,” Bashor said in the release.

Genetic circuits program cells to perform specific functions. Finding the circuit that matches a desired function or performance "can be like looking for a needle in a haystack," Bashor explained. This work looked to find a solution to this long-standing challenge in synthetic biology.

First, the team developed a library of proof-of-concept genetic circuits. It then pooled the circuits and inserted them into human cells. Next, they used long-read and short-read DNA sequencing to create "a master map" that linked each circuit to how it performed.

The data was then used to train AI and machine learning models to analyze circuits and make accurate predictions for how untested circuits might perform.

“We end up with measurements for a lot of the possible designs but not all of them, and that is where building the (machine learning) model comes in,” O’Connell explained in the release. “We use the data to train a model that can understand this landscape and predict things we were not able to generate data on.”

Ultimately, the researchers believe the circuit characterization and AI-driven understanding can speed up synthetic biology, lead to faster development of biotechnology and potentially support more cell-based therapy breakthroughs by shedding new light on how gene circuits behave, according to Rice.

“We think AI/ML-driven design is the future of synthetic biology,” Bashor added in the release. “As we collect more data using CLASSIC, we can train more complex models to make predictions for how to design even more sophisticated and useful cellular biotechnology.”

The team at Rice also worked with Pankaj Mehta’s group in the department of physics at Boston University and Todd Treangen’s group in Rice’s computer science department. Research was supported by the National Institutes of Health, Office of Naval Research, the Robert J. Kleberg Jr. and Helen C. Kleberg Foundation, the American Heart Association, National Library of Medicine, the National Science Foundation, Rice’s Ken Kennedy Institute and the Rice Institute of Synthetic Biology.

James Collins, a biomedical engineer at MIT who helped establish synthetic biology as a field, added that CLASSIC is a new, defining milestone.

“Twenty-five years ago, those early circuits showed that we could program living cells, but they were built one at a time, each requiring months of tuning,” said Collins, who was one of the inventors of the toggle switch. “Bashor and colleagues have now delivered a transformative leap: CLASSIC brings high-throughput engineering to gene circuit design, allowing exploration of combinatorial spaces that were previously out of reach. Their platform doesn’t just accelerate the design-build-test-learn cycle; it redefines its scale, marking a new era of data-driven synthetic biology.”