While COVID-19 has forced so much of the workforce to work from home, the trend was already rising in popularity — and will continue to do so. Here's how to be a better remote worker. Getty Images

The novel coronavirus has propelled companies to encourage their staff to work from home, requiring many employees to adjust quickly to a new — and sometimes tricky — reality. Those who are accustomed to the traditional working environment, the physical office space, and the presence of colleagues can find this setup challenging.

However, working remotely has been a rising trend for companies as technology has reduced friction when connecting team members, accessing information, and delivering work product. In fact, 3.4 percent of the workforce work from home at least half the week (Global Workplace Analytics), and 44 percent of employees say that part of their team is full-time remote (Buffer).

If you're an employee and this is your first time remote working, here are some pro tips that will help you nail it:

Get dressed

Prepare for your work day as you would be going into the office and follow your same morning routine. Doing so will help you switch to work mode and create some mental separation between your domestic state of mind and your professional demeanor. Studies show that dressing up affects your confidence and ability to think creatively, not to mention how colleagues on the other side of the camera perceive you.

Designate a workspace

It's tempting to work from the couch, the comfort of your own bed, or the dining table, but establishing a work zone can help with adding structure to your physical environment. If your spouse or partner is also working from home, it's a good idea to have your own, separate working space to stay focused and on task. If you have children or other family members at home, they will be tempted to engage with you. The physical space will serve as a reminder that you're on the clock even though you're physically nearby.

Tap into technology to get organized

There are myriad technology tools that can help you organize your day and prioritize projects and tasks. Many of them are free and included in most productivity platforms. Use shared calendars to set deadlines with other team members, task trackers to check in on the progress of complex projects, and to-do lists with reminder notifications to keep you accountable.

Communication is key 

Remember that your colleagues and managers might be working remotely for the first time as well. It's a good idea to be patient and over-communicate progress on your tasks, check-in on your team's tasks, and clarify your priorities as you work through them. Don't wait for your superiors in case something is held back. Be proactive and, most importantly, be helpful and present. When working from home, the concept of managing up is critical.

Stay positive

Maintain the same dynamic and energy you would if you were physically sitting next to someone or in a meeting. Just because you're using the phone, video conference, or messaging app doesn't mean your interactions have to be awkward, weird, or stale.

Find your work-life balance — even from home

Make sure you take adequate breaks and move around to clear your head and fuel your creative mind. Go on a quick dog walk, take a stroll around the block, or take care of your family so you avoid burnout. Staying fresh and alert is important at a time when many would otherwise expect a drop in productivity and quality.

Regardless of what's happening in the world, working remotely will continue to rise in popularity. While the coronavirus may have created urgency, mastering this setup will be essential in keeping you sane and focused while developing skills that will make you a more desirable colleague now and in the future.

------

Carey Kirkpatrick is the CEO and founder of CKP Group, a Houston-based marketing and public relations group. She previously served as director of marketing at CultureMap, a sister site to InnovationMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Greentown Labs names Lawson Gow as its new Houston leader

head of hou

Greentown Labs has named Lawson Gow as its Head of Houston.

Gow is the founder of The Cannon, a coworking space with seven locations in the Houston area, with additional partner spaces. He also recently served as managing partner at Houston-based investment and advisory firm Helium Capital. Gow is the son of David Gow, founder of Energy Capital's parent company, Gow Media.

According to Greentown, Gow will "enhance the founder experience, cultivate strategic partnerships, and accelerate climatetech solutions" in his new role.

“I couldn’t be more excited to join Greentown at this critical moment for the energy transition,” Gow said in a news release. “Greentown has a fantastic track record of supporting entrepreneurs in Houston, Boston, and beyond, and I am eager to keep advancing our mission in the energy transition capital of the world.”

Gow has also held analyst, strategy and advising roles since graduating from Rice University.

“We are thrilled to welcome Lawson to our leadership team,” Georgina Campbell Flatter, CEO of Greentown Labs, added in the release. “Lawson has spent his career building community and championing entrepreneurs, and we look forward to him deepening Greentown’s support of climate and energy startups as our Head of Houston.”

Gow is the latest addition to a series of new hires at Greentown Labs following a leadership shakeup.

Flatter was named as the organization's new CEO in February, replacing Kevin Dutt, Greentown’s interim CEO, who replaced Kevin Knobloch after he announced that he would step down in July 2024 after less than a year in the role.

Greentown also named Naheed Malik its new CFO in January.

Timmeko Moore Love was named the first Houston general manager and senior vice president of Greentown Labs. According to LinkedIn, she left the role in January.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.

Rice team keeps CO2-to-fuel devices running 50 times longer in new study

Bubbling Up

In a new study published in the journal Science, a team of Rice University researchers shared findings on how acid bubbles can improve the stability of electrochemical devices that convert carbon dioxide into useful fuels and chemicals.

The team led by Rice associate professor Hoatian Wang addressed an issue in the performance and stability of CO2 reduction systems. The gas flow channels in the systems often clog due to salt buildup, reducing efficiency and causing the devices to fail prematurely after about 80 hours of operation.

“Salt precipitation blocks CO2 transport and floods the gas diffusion electrode, which leads to performance failure,” Wang said in a news release. “This typically happens within a few hundred hours, which is far from commercial viability.”

By using an acid-humidified CO2 technique, the team was able to extend the operational life of a CO2 reduction system more than 50-fold, demonstrating more than 4,500 hours of stable operation in a scaled-up reactor.

The Rice team made a simple swap with a significant impact. Instead of using water to humidify the CO2 gas input into the reactor, the team bubbled the gas through an acid solution such as hydrochloric, formic or acetic acid. This process made more soluble salt formations that did not crystallize or block the channels.

The process has major implications for an emerging green technology known as electrochemical CO2 reduction, or CO2RR, that transforms climate-warming CO2 into products like carbon monoxide, ethylene, or alcohols. The products can be further refined into fuels or feedstocks.

“Using the traditional method of water-humidified CO2 could lead to salt formation in the cathode gas flow channels,” Shaoyun Hao, postdoctoral research associate in chemical and biomolecular engineering at Rice and co-first author, explained in the news release. “We hypothesized — and confirmed — that acid vapor could dissolve the salt and convert the low solubility KHCO3 into salt with higher solubility, thus shifting the solubility balance just enough to avoid clogging without affecting catalyst performance.”

The Rice team believes the work can lead to more scalable CO2 electrolyzers, which is vital if the technology is to be deployed at industrial scales as part of carbon capture and utilization strategies. Since the approach itself is relatively simple, it could lead to a more cost-effective and efficient solution. It also worked well with multiple catalyst types, including zinc oxide, copper oxide and bismuth oxide, which are allo used to target different CO2RR products.

“Our method addresses a long-standing obstacle with a low-cost, easily implementable solution,” Ahmad Elgazzar, co-first author and graduate student in chemical and biomolecular engineering at Rice, added in the release. “It’s a step toward making carbon utilization technologies more commercially viable and more sustainable.”

A team led by Wang and in collaboration with researchers from the University of Houston also recently shared findings on salt precipitation buildup and CO2RR in a recent edition of the journal Nature Energy.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.

Houston foundation grants $27M to support Texas chemistry research

fresh funding

Houston-based The Welch Foundation has doled out $27 million in its latest round of grants for chemical research, equipment and postdoctoral fellowships.

According to a June announcement, $25.5 million was allocated for the foundation's longstanding research grants, which provide $100,000 per year in funding for three years to full-time, regular tenure or tenure-track faculty members in Texas. The foundation made 85 grants to faculty at 16 Texas institutions for 2025, including:

  • Michael I. Jacobs, assistant professor in the chemistry and biochemistry department at Texas State University, who is investigating the structure and thermodynamics of intrinsically disordered proteins, which could "reveal clues about how life began," according to the foundation.
  • Kendra K. Frederick, assistant professor in the biophysics department at The University of Texas Southwestern Medical Center, who is studying a protein linked to Parkinson’s disease.
  • Jennifer S. Brodbelt, professor in chemistry at The University of Texas at Austin, who is testing a theory called full replica symmetry breaking (fullRSB) on glass-like materials, which has implications for complex systems in physics, chemistry and biology.

Additional funding will be allocated to the Welch Postdoctoral Fellows of the Life Sciences Research Foundation. The program provides three-year fellowships to recent PhD graduates to support clinical research careers in Texas. Two fellows from Rice University and Baylor University will receive $100,000 annually for three years.

The Welch Foundation also issued $975,000 through its equipment grant program to 13 institutions to help them develop "richer laboratory experience(s)." The universities matched funds of $352,346.

Since 1954, the Welch Foundation has contributed over $1.1 billion for Texas-nurtured advancements in chemistry through research grants, endowed chairs and other chemistry-related ventures. Last year, the foundation granted more than $40.5 million in academic research grants, equipment grants and fellowships.

“Through funding basic chemical research, we are actively investing in the future of humankind,” Adam Kuspa, president of The Welch Foundation, said the news release. “We are proud to support so many talented researchers across Texas and continue to be inspired by the important work they complete every day.”