Global organization gener8tor, along with Downtown Launchpad, started its ninth gBETA Houston cohort last month. Photo via Getty Images

For the ninth time, gBETA is incubating five early-stage Houston startups providing innovative solutions across skincare, human resources, and more.

Global organization gener8tor, along with Downtown Launchpad, started its ninth gBETA Houston cohort last month. The free seven-week, no-equity accelerator program selected five Houston-based founders to provide helpful programming, support, and connections to mentors, customers, corporate partners, and investors.

"We're thrilled to continue fostering innovation in Houston and are thankful for our collaboration with Downtown Launchpad as we launch the ninth cohort of gBETA Houston,” says Vanessa Huerta, vice president of gBETA at gener8tor, in a statement.

The program has accelerated 40 Houston companies since its launch in Houston a few years ago. The companies have gone on to raise over $8.6 million in funding and created more than 70 jobs.

“With each new cohort, we witness the power of innovation unleashed,” Muriel Foster, gBETA Houston director, says in the release. “The Spring 2024 gBETA Houston cohort embodies the spirit of relentless creativity and boundless ambition.”

The gBETA Houston Spring 2024 Cohort includes:

  • Cosnetix is innovating within personalized skincare, leveraging genetic and microbial skin profiling to offer users custom skincare product recommendations. The platform has been developed through over 100 customer discovery interviews and is headed for beta-testing.
  • Kannect has created an innovative community engagement platform — already used by 20 organizations — to streamline communication, foster collaboration, and enhance member engagement. The tools can be used by nonprofits, associations, religious institutions, and beyond as a digital dashboard to manage memberships, organize events, and facilitate meaningful interactions.
  • Targeting college grads and career pivoters, No Experience Jobs helps users find entry-level jobs that don’t require experience. In its first three months of launching, NoExperienceJobs.io received more than 72,000 unique monthly visitors, gained over 1,300 newsletter subscribers, generated more than 700,000 social media engagements, and is already revenue-generating.
  • The Roo App partners with bars and restaurants to connect designating drivers to those who need designated driver services. The company is currently operation on a web-based platform with over 1,500 current visitors, but plans to launch the mobile application later this year.
  • Yuyo.love is changing the fitness game by providing bilingual fitness classes ranging from yoga, pilates, dance, fitness, nutrition, and meditation. The company's hybrid classes have over 150 participants per class and plans to launch the platform this quarter.
Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

UH receives $2.6M gift to support opioid addiction research and treatment

drug research

The estate of Dr. William A. Gibson has granted the University of Houston a $2.6 million gift to support and expand its opioid addiction research, including the development of a fentanyl vaccine that could block the drug's ability to enter the brain.

The gift builds upon a previous donation from the Gibson estate that honored the scientist’s late son Michael, who died from drug addiction in 2019. The original donation established the Michael C. Gibson Addiction Research Program in UH's department of psychology. The latest donation will establish the Michael Conner Gibson Endowed Professorship in Psychology and the Michael Conner Gibson Research Endowment in the College of Liberal Arts and Social Sciences.

“This incredibly generous gift will accelerate UH’s addiction research program and advance new approaches to treatment,” Daniel O’Connor, dean of the College of Liberal Arts and Social Sciences, said in a news release.

The Michael C. Gibson Addiction Research Program is led by UH professor of psychology Therese Kosten and Colin Haile, a founding member of the UH Drug Discovery Institute. Currently, the program produces high-profile drug research, including the fentanyl vaccine.

According to UH, the vaccine can eliminate the drug’s “high” and could have major implications for the nation’s opioid epidemic, as research reveals Opioid Use Disorder (OUD) is treatable.

The endowed professorship is combined with a one-to-one match from the Aspire Fund Challenge, a $50 million grant program established in 2019 by an anonymous donor. UH says the program has helped the university increase its number of endowed chairs and professorships, including this new position in the department of psychology.

“Our future discoveries will forever honor the memory of Michael Conner Gibson and the Gibson family,” O’Connor added in the release. “And I expect that the work supported by these endowments will eventually save many thousands of lives.”

CenterPoint and partners launch AI initiative to stabilize the power grid

AI infrastructure

Houston-based utility company CenterPoint Energy is one of the founding partners of a new AI infrastructure initiative called Chain Reaction.

Software companies NVIDIA and Palantir have joined CenterPoint in forming Chain Reaction, which is aimed at speeding up AI buildouts for energy producers and distributors, data centers and infrastructure builders. Among the initiative’s goals are to stabilize and expand the power grid to meet growing demand from data centers, and to design and develop large data centers that can support AI activity.

“The energy infrastructure buildout is the industrial challenge of our generation,” Tristan Gruska, Palantir’s head of energy and infrastructure, says in a news release. “But the software that the sector relies on was not built for this moment. We have spent years quietly deploying systems that keep power plants running and grids reliable. Chain Reaction is the result of building from the ground up for the demands of AI.”

CenterPoint serves about 7 million customers in Texas, Indiana, Minnesota and Ohio. After Hurricane Beryl struck Houston in July 2024, CenterPoint committed to building a resilient power grid for the region and chose Palantir as its “software backbone.”

“Never before have technology and energy been so intertwined in determining the future course of American innovation, commercial growth, and economic security,” Jason Wells, chairman, president and CEO of CenterPoint, added in the release.

In November, the utility company got the go-ahead from the Public Utility Commission of Texas for a $2.9 billion upgrade of its Houston-area power grid. CenterPoint serves 2.9 million customers in a 12-county territory anchored by Houston.

A month earlier, CenterPoint launched a $65 billion, 10-year capital improvement plan to support rising demand for power across all of its service territories.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.

Houston researchers develop material to boost AI speed and cut energy use

ai research

A team of researchers at the University of Houston has developed an innovative thin-film material that they believe will make AI devices faster and more energy efficient.

AI data centers consume massive amounts of electricity and use large cooling systems to operate, adding a strain on overall energy consumption.

“AI has made our energy needs explode,” Alamgir Karim, Dow Chair and Welch Foundation Professor at the William A. Brookshire Department of Chemical and Biomolecular Engineering at UH, explained in a news release. “Many AI data centers employ vast cooling systems that consume large amounts of electricity to keep the thousands of servers with integrated circuit chips running optimally at low temperatures to maintain high data processing speed, have shorter response time and extend chip lifetime.”

In a report recently published in ACS Nano, Karim and a team of researchers introduced a specialized two-dimensional thin film dielectric, or electric insulator. The film, which does not store electricity, could be used to replace traditional, heat-generating components in integrated circuit chips, which are essential hardware powering AI.

The thinner film material aims to reduce the significant energy cost and heat produced by the high-performance computing necessary for AI.

Karim and his former doctoral student, Maninderjeet Singh, used Nobel prize-winning organic framework materials to develop the film. Singh, now a postdoctoral researcher at Columbia University, developed the materials during his doctoral training at UH, along with Devin Shaffer, a UH professor of civil engineering, and doctoral student Erin Schroeder.

Their study shows that dielectrics with high permittivity (high-k) store more electrical energy and dissipate more energy as heat than those with low-k materials. Karim focused on low-k materials made from light elements, like carbon, that would allow chips to run cooler and faster.

The team then created new materials with carbon and other light elements, forming covalently bonded sheetlike films with highly porous crystalline structures using a process known as synthetic interfacial polymerization. Then they studied their electronic properties and applications in devices.

According to the report, the film was suitable for high-voltage, high-power devices while maintaining thermal stability at elevated operating temperatures.

“These next-generation materials are expected to boost the performance of AI and conventional electronics devices significantly,” Singh added in the release.