Three Houston-based health tech companies were announced to have joined the 2022 cohort of MedTech Innovator. Photo via Getty Images

Three Houston-based medtech startups are getting a big boost from a medtech accelerator.

The startups — Ad Vital, Corveus Medical, and CorInnova — have been chosen from this year’s cohort for MedTech Innovator, an international accelerator that helps companies that created health care technology. In all, 55 startups are involved in this year’s four-month accelerator program.

Ad Vital and Corveus Medical also are participating in MedTech Innovator’s corporate mentorship program, while CorInnova is one of five startups picked for the pediatric accelerator track.

MedTech Innovator’s 10th annual program kicked off in mid-June at the MedTech Innovator Summit in Mountain View, California. Leaders from each of the 50 startups attended networking events and workshops with MedTech Innovator partners and other industry professionals. Members of this year’s cohort also were featured June 17 at the WSGR Medical Device Conference in San Francisco.

Only 5 percent of applicants were accepted for this year’s accelerator program. Earlier this year, MedTech Innovator held in-person pitch events in five cities, including Houston.

At the conclusion of the 2022 program, MedTech Innovator will award $500,000 in cash and in-kind prizes at this October’s MedTech Conference in Boston. The grand prize is $350,000.

“Over the past nine years, MedTech Innovator has established a unique track record of identifying and supporting leading startups, with 95 percent of our graduates either still in business or having been acquired,” Paul Grand, CEO of MedTech Innovator, says in a news release.

Here’s an overview of what Ad Vital, Corveus Medical, and CorInnova do:

  • Ad Vital’s app helps medical practices through sales, marketing, and operations. For instance, the app automatically organizes sales campaigns aimed at converting customer leads via text messages, emails, and Facebook messages.
  • Corveus Medical’s catheter device is designed to prevent heart failure. More than 6 million American adults experience heart failure. The company is also among five selected to pitch in October for a competition from the National Capital Consortium for Pediatric Device Innovation.
  • CorInnova’s minimally invasive device is engineered to treat congestive heart failure, particularly infants. Each year, about 10,000 babies born in the U.S. have critical heart defects that often require surgery or other procedures.
Houston's medical innovation community congregated to discuss breakthrough innovations in health care. Photo via Getty Images

Houston organizations announce 10 most promising life science startups

future of health care

What startups are creating the future of health care? A Houston conference this week gathered to discuss.

The 10th annual Texas Life Science Forum hosted by BioHouston and the Rice Alliance for Technology and Entrepreneurship engaged thought leadership within the life science community with panels, discussions, and more. Additionally, 49 companies pitched their solutions across medical device, therapeutics, pharmaceuticals, and more to the crowd.

Austin-based Dynamic Light won the Michael E. DeBakey Memorial Life Science Award, established by BioHouston in honor of the groundbreaking Houston cardiovascular surgeon. The software company integrates with microscope or robotic systems to provide better visuals to surgeons and health care providers and reduce medical errors, radiation and costs. The award was presented by Ann Tanabe, CEO of BioHouston.

The event also named the 10 most promising life science companies selected by investors and presented by the Greater Houston Partnership. This year's selection included the following companies, in alphabetical order.

Ares Immunotherapy

Photo via Getty Images

Based in Cartersville, Georgia, Ares Immunotherapy uses a unique subset of T-cells for the treatment of solid tumors. According to the company, it is is preparing for a first in man trial in mesothelioma in 2023.

Corveus Medical

Photo courtesy of TMC

Houston-based Corveus Medical, which was formerly known as Caridian Medical, is a part of TMC's Biodesign program. The company was founded by Ishan Kamat, COO, and Tyler Melton, CEO.

"We are developing a novel, catheter-based device that performs a targeted sympathetic nerve ablation to treat heart failure," according to the company. "Our solution leverages the body’s natural mechanisms to bring fluid levels back to normal, giving physicians an effective treatment option, reducing costs for hospitals, and improving quality of life for the patient."

Drusolv Therapeutics

Photo via Pexels

Drusolv Therapeutics, based in Philadelphia, Pennsylvania, was founded out of Harvard University and been validated in a proof-of-concept clinical trial. The company's product, a novel reformulation of atorvastatin, is targeting age-related macular degeneration, or AMD, a serious eye disease. According to the company, it's a $4 billion a year, unmet need.

EMPIRI

Photo via jlabs.jnjinnovation.com

Houston-based EMPIRI is an early-stage biotechnology company currently focusing on precision oncology and utilizing automation for personal diagnosis. The company works out of JLABS @ TMC.

"Our proprietary 3D tissue culture method, E-slices, enables personalized drug response measurements from intact patient tissues," per the company. "E-slice has been clinically validated to accurately predict individual cancer patient responses to chemotherapies, targeted therapies, a immunotherapies."

Lapovations

Photo via Getty Images

Based in Fayetteville, Arkansas, Lapovations is working on technologies that improve laparoscopy.

"Our flagship product AbGrab is a single-use device that uses suction to lift the abdominal wall prior to closed insertion entry," according to the company. "Manually lifting can be difficult and unreliable, especially with obese patients or for clinicians with small hands."

Maxwell Biosciences

Photo by Chokniti Khongchum from Pexels

Austin-based Maxwell Biosciences is creating anti-infectives that inactivate a broad spectrum of viruses. The company's product, CLAROMERS, has seen success in its preclinical animal studies, as well as lab-grown human tissues. Maxwell is fueled by over $30 million in non-dilutive and government funding (e.g. DARPA, NIH, NIAID).

NeuraStasis

Image via neurastasis.com

Doctors have to respond quickly when treating ischemic stroke patients, and Houston-based NeuraStasis is working on a way to give them more time. Each minute a patient is waiting, irreparable damage is being done. The company's noninvasive solution uses electrical neurostimulation to preserve brain functionality. NeuraStasis is based in JLABS @ TMC.

Vena Medical

Image via venamed.ca

Canada medical device company Vena Medical is working on the "world's smallest camera" that is able to record inside veins and arteries to help physicians treat stroke.

Vivifi Medical

Photo courtesy of TMC

Houston-based Vivifi Medical, a Texas Medical Center Innovation company, is working to improve the quality of life of patients with Male Infertility and benign prostatic hyperplasia — 12 million men in the United States alone — by ending recurrency via suture-less laparoscopic technology.

XN Health

Image via xn-health.com

XN Health, based in Houston, has developed a novel approach to phrenic nerve stimulation to treat progression of ventilator induced diaphragm disfunction to help wean patients off the ventilator faster. The technology should speed up patient liberation times, shortening ICU stay, improve healthcare outcomes, and reduce health care costs.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

United breaks ground on $177 million facility and opens tech center at IAH

off the ground

United Airlines announced new infrastructure investments at George Bush Intercontinental Airport as part of the company’s ongoing $3.5 billion investment into IAH.

United broke ground on a new $177 million Ground Service Equipment (GSE) Maintenance Facility this week that will open in 2027.

The 140,000-square-foot GSE facility will support over 1,800 ground service vehicles and with expansive repair space, shop space and storage capacity. The GSE facility will also be targeted for LEED Silver certification. United believes this will provide more resources to assist with charging batteries, fabricating metal and monitoring electronic controls with improved infrastructure and modern workspaces.

Additionally, the company opened its new $16 million Technical Operations Training Center.

The center will include specialized areas for United's growing fleet, and advanced simulation technology that includes scenario-based engine maintenance and inspection training. By 2032, the Training Center will accept delivery of new planes. This 91,000-square-foot facility will include sheet metal and composite training shops as well.

The Training Center will also house a $6.3 million Move Team Facility, which is designed to centralize United's Super Tug operations. United’s IAH Move Team manages over 15 Super Tugs across the airfield, which assist with moving hundreds of aircraft to support flight departures, remote parking areas, and Technical Operations Hangars.

The company says it plans to introduce more than 500 new aircraft into its fleet, and increase the total number of available seats per domestic departure by nearly 30%. United also hopes to reduce carbon emissions per seat and create more unionized jobs by 2026.

"With these new facilities, Ground Service Equipment Maintenance Facility and the Technical Operations Training Center, we are enhancing our ability to maintain a world-class fleet while empowering our employees with cutting-edge tools and training,” Phil Griffith, United's Vice President of Airport Operations, said in a news release. “This investment reflects our long-term vision for Houston as a critical hub for United's operations and our commitment to sustainability, efficiency, and growth."

UH study uncovers sustainable farming methods for hemp production

growth plan

A new University of Houston study of hemp microbes can potentially assist scientists in creating special mixtures of microbes to make hemp plants produce more CBD or have better-quality fibers.

The study, led by Abdul Latif Khan, an assistant professor of biotechnology at the Cullen College of Engineering Technology Division, was published in the journal Scientific Reports from the Nature Publishing Group. The team also included Venkatesh Balan, UH associate professor of biotechnology at the Cullen College of Engineering Technology Division; Aruna Weerasooriya, professor of medicinal plants at Prairie View A&M University; and Ram Ray, professor of agronomy at Prairie View A&M University.

The study examined microbiomes living in and around the roots (rhizosphere) and on the leaves (phyllosphere) of four types of hemp plants. The team at UH compared how these microorganisms differ between hemp grown for fiber and hemp grown for CBD production.

“In hemp, the microbiome is important in terms of optimizing the production of CBD and enhancing the quality of fiber,” Khan said in a news release. “This work explains how different genotypes of hemp harbor microbial communities to live inside and contribute to such processes. We showed how different types of hemp plants have their own special groups of tiny living microbes that help the plants grow and stay healthy.”

The study indicates that hemp cultivation can be improved by better understanding these distinct microbial communities, which impact growth, nutrient absorption, stress resilience, synthesis and more. This could help decrease the need for chemical inputs and allow growers to use more sustainable agricultural practices.

“Understanding these microorganisms can also lead to more sustainable farming methods, using nature to boost plant growth instead of relying heavily on chemicals,” Ahmad, the paper’s first author and doctoral student of Khan’s, said the news release.

Other findings in the study included higher fungal diversity in leaves and stems, higher bacterial diversity in roots and soil, and differing microbiome diversity. According to UH, CBD-rich varieties are currently in high demand for pharmaceutical products, and fiber-rich varieties are used in industrial applications like textiles.