Tatiana Fofanova and Dr. Desh Mohan, founders of Koda Health. Photo courtesy Koda Health.

Home to leading hospitals, universities and health-focused incubators, Houston is a breeding ground for innovative medical technology and breakthroughs that can improve outcomes and lead to a better quality of life for patients.

The Health Tech Business category in our 2025 Houston Innovation Awards will honor an innovative startup within the health and medical technology sectors.

Six forward-thinking businesses have been named finalists for the 2025 award. They range from an end-of-life care company to others developing devices and systems for heart monitoring, sleep apnea, hearing loss and more.

Read more about these businesses, their innovative founders, and how they're shaping the future of health care below. Then join us at the Houston Innovation Awards on Nov. 13 at Greentown Labs, when the winner will be unveiled at our live awards ceremony.

Tickets are now on sale for this exclusive event celebrating all things Houston Innovation.

Bairitone Health

Bairitone Health is bringing anatomy imaging for sleep apnea to the home environment. The company's platform maps users' anatomy during natural sleep using a facial patch to determine the root cause of airway obstruction. It then offers effective therapies for each patient. The system is currently in the research and development phase and is being used in clinical trials and studies.

The company was founded in 2022 in the Texas Medical Center's Biodesign program by CEO Meagan Pitcher, CTO Onur Kilic and chief medical officer Britt Cross. It was a member of Activate Houston's inaugural cohort and has participated in numerous accelerators and incubators. It raised a pre-seed round last year of $435,000.

Corveus Medical

Corveus Medical has developed a novel catheter device that allows cardiologists to perform a splanchnic nerve ablation, restoring the pressure balance in patients with moderate heart failure. Its pre-FDA-approved, minimally invasive solution deactivates a nerve that has been demonstrated to be a root cause behind heart failure progression, which allows physicians to treat patients who have traditionally had few options.

The company, formerly known as Caridian Medical, was founded in 2021 by CEO Tyler Melton and CMO Ishan Kamat. It has participated in incubators such as TMC Biodesign, Y Combinator, MedTech Innovator and Fogarty Innovation and was named one of the 10 most promising life science companies at Texas Life Science Forum in 2022. The company says it will move toward validation and verification testing for its device in Q4 of this year.

FibroBiologics

Regenerative medicine company FibroBioligics uses fibroblasts, the body’s most common type of cell, rather than stem cells, to help grow new cells to repair tissue and modulate the immune system. The cell therapies offer treatments for chronic conditions such as degenerative disc disease, multiple sclerosis and non-healing wounds.

The publicly traded company was founded in 2021 by CEO Pete O'Heeron. It opened a new 10,000-square-foot Houston lab earlier this year to scale up research efforts and pave the way for in-house manufacturing. The company says it plans to launch its first clinical trial for diabetic foot ulcers soon, representing the transition of its fibroblast technology to the clinic setting.

Koda Health

Koda Health has developed an advance care planning platform (ACP) that allows users to document and share their care preferences, goals and advance directives for health systems. The web-based platform guides patients through values-based decisions with interactive tools and generates state-specific, legally compliant documents that integrate seamlessly with electronic health record systems. The company also added kidney action planning to its suite of services for patients with serious illnesses last year.

Koda Health was founded out of the TMC's Biodesign Fellowship in 2020 by CEO Tatiana Fofanova, chief medical officer Dr. Desh Mohan, and chief technology officer Katelin Cherry. The company raised a $7 million series A earlier this year, and also announced major partnerships and integrations with Epic, Guidehealth, Medical Home Network, Privia Health and others.

NanoEar

NanoEar has miniaturized hearing aid technology so that it can be implanted across the eardrum, allowing adults with age-related hearing loss to enjoy better sound quality than they would with behind-the-ear hearing aids.

Dr. Ron Moses, an ENT specialist and surgeon at Houston Methodist, developed the technology, and the company was founded in 2016 with CFO Willem Vermaat and COO Michael Moore. The company participated in the TMC Innovation Institute in 2016. It has issued nine U.S. patents and performed successful human cadaver and animal proof-of-concept experiments. Its next step is developing a prototype.

Wellysis USA

Wellysis USA Inc. works to detect heart rhythm disorders with its continuous ECG/EKG monitor with AI reporting. Its S-Patch cardiac monitor is designed for extended testing periods of up to 14 days on a single battery charge. The device weighs only 9 grams, is waterproof and designed to be comfortable to wear, and is considered to have a high detection rate for arrhythmias. It is ideally suited for patient-centric clinical trials to help physicians make diagnoses faster, cheaper and more conveniently.

It was established in Houston in 2023 and participated in the JLABS SFF Program the same year. It closed a $12 million series B last year. It was founded by CEO Young Juhn, CTO Rick Kim, CFO JungSoo Kim and chief strategy officer JoongWoo Kim.

---

The Houston Innovation Awards program is sponsored by Houston City College Northwest, Houston Powder Coaters, FLIGHT by Yuengling, and more to be announced soon. For sponsorship opportunities, please contact sales@innovationmap.com.

Three Houston-based health tech companies were announced to have joined the 2022 cohort of MedTech Innovator. Photo via Getty Images

3 Houston health tech companies join global accelerator cohort

Three Houston-based medtech startups are getting a big boost from a medtech accelerator.

The startups — Ad Vital, Corveus Medical, and CorInnova — have been chosen from this year’s cohort for MedTech Innovator, an international accelerator that helps companies that created health care technology. In all, 55 startups are involved in this year’s four-month accelerator program.

Ad Vital and Corveus Medical also are participating in MedTech Innovator’s corporate mentorship program, while CorInnova is one of five startups picked for the pediatric accelerator track.

MedTech Innovator’s 10th annual program kicked off in mid-June at the MedTech Innovator Summit in Mountain View, California. Leaders from each of the 50 startups attended networking events and workshops with MedTech Innovator partners and other industry professionals. Members of this year’s cohort also were featured June 17 at the WSGR Medical Device Conference in San Francisco.

Only 5 percent of applicants were accepted for this year’s accelerator program. Earlier this year, MedTech Innovator held in-person pitch events in five cities, including Houston.

At the conclusion of the 2022 program, MedTech Innovator will award $500,000 in cash and in-kind prizes at this October’s MedTech Conference in Boston. The grand prize is $350,000.

“Over the past nine years, MedTech Innovator has established a unique track record of identifying and supporting leading startups, with 95 percent of our graduates either still in business or having been acquired,” Paul Grand, CEO of MedTech Innovator, says in a news release.

Here’s an overview of what Ad Vital, Corveus Medical, and CorInnova do:

  • Ad Vital’s app helps medical practices through sales, marketing, and operations. For instance, the app automatically organizes sales campaigns aimed at converting customer leads via text messages, emails, and Facebook messages.
  • Corveus Medical’s catheter device is designed to prevent heart failure. More than 6 million American adults experience heart failure. The company is also among five selected to pitch in October for a competition from the National Capital Consortium for Pediatric Device Innovation.
  • CorInnova’s minimally invasive device is engineered to treat congestive heart failure, particularly infants. Each year, about 10,000 babies born in the U.S. have critical heart defects that often require surgery or other procedures.
Houston's medical innovation community congregated to discuss breakthrough innovations in health care. Photo via Getty Images

Houston organizations announce 10 most promising life science startups

future of health care

What startups are creating the future of health care? A Houston conference this week gathered to discuss.

The 10th annual Texas Life Science Forum hosted by BioHouston and the Rice Alliance for Technology and Entrepreneurship engaged thought leadership within the life science community with panels, discussions, and more. Additionally, 49 companies pitched their solutions across medical device, therapeutics, pharmaceuticals, and more to the crowd.

Austin-based Dynamic Light won the Michael E. DeBakey Memorial Life Science Award, established by BioHouston in honor of the groundbreaking Houston cardiovascular surgeon. The software company integrates with microscope or robotic systems to provide better visuals to surgeons and health care providers and reduce medical errors, radiation and costs. The award was presented by Ann Tanabe, CEO of BioHouston.

The event also named the 10 most promising life science companies selected by investors and presented by the Greater Houston Partnership. This year's selection included the following companies, in alphabetical order.

Ares Immunotherapy

Photo via Getty Images

Based in Cartersville, Georgia, Ares Immunotherapy uses a unique subset of T-cells for the treatment of solid tumors. According to the company, it is is preparing for a first in man trial in mesothelioma in 2023.

Corveus Medical

Photo courtesy of TMC

Houston-based Corveus Medical, which was formerly known as Caridian Medical, is a part of TMC's Biodesign program. The company was founded by Ishan Kamat, COO, and Tyler Melton, CEO.

"We are developing a novel, catheter-based device that performs a targeted sympathetic nerve ablation to treat heart failure," according to the company. "Our solution leverages the body’s natural mechanisms to bring fluid levels back to normal, giving physicians an effective treatment option, reducing costs for hospitals, and improving quality of life for the patient."

Drusolv Therapeutics

Photo via Pexels

Drusolv Therapeutics, based in Philadelphia, Pennsylvania, was founded out of Harvard University and been validated in a proof-of-concept clinical trial. The company's product, a novel reformulation of atorvastatin, is targeting age-related macular degeneration, or AMD, a serious eye disease. According to the company, it's a $4 billion a year, unmet need.

EMPIRI

Photo via jlabs.jnjinnovation.com

Houston-based EMPIRI is an early-stage biotechnology company currently focusing on precision oncology and utilizing automation for personal diagnosis. The company works out of JLABS @ TMC.

"Our proprietary 3D tissue culture method, E-slices, enables personalized drug response measurements from intact patient tissues," per the company. "E-slice has been clinically validated to accurately predict individual cancer patient responses to chemotherapies, targeted therapies, a immunotherapies."

Lapovations

Photo via Getty Images

Based in Fayetteville, Arkansas, Lapovations is working on technologies that improve laparoscopy.

"Our flagship product AbGrab is a single-use device that uses suction to lift the abdominal wall prior to closed insertion entry," according to the company. "Manually lifting can be difficult and unreliable, especially with obese patients or for clinicians with small hands."

Maxwell Biosciences

Photo by Chokniti Khongchum from Pexels

Austin-based Maxwell Biosciences is creating anti-infectives that inactivate a broad spectrum of viruses. The company's product, CLAROMERS, has seen success in its preclinical animal studies, as well as lab-grown human tissues. Maxwell is fueled by over $30 million in non-dilutive and government funding (e.g. DARPA, NIH, NIAID).

NeuraStasis

Image via neurastasis.com

Doctors have to respond quickly when treating ischemic stroke patients, and Houston-based NeuraStasis is working on a way to give them more time. Each minute a patient is waiting, irreparable damage is being done. The company's noninvasive solution uses electrical neurostimulation to preserve brain functionality. NeuraStasis is based in JLABS @ TMC.

Vena Medical

Image via venamed.ca

Canada medical device company Vena Medical is working on the "world's smallest camera" that is able to record inside veins and arteries to help physicians treat stroke.

Vivifi Medical

Photo courtesy of TMC

Houston-based Vivifi Medical, a Texas Medical Center Innovation company, is working to improve the quality of life of patients with Male Infertility and benign prostatic hyperplasia — 12 million men in the United States alone — by ending recurrency via suture-less laparoscopic technology.

XN Health

Image via xn-health.com

XN Health, based in Houston, has developed a novel approach to phrenic nerve stimulation to treat progression of ventilator induced diaphragm disfunction to help wean patients off the ventilator faster. The technology should speed up patient liberation times, shortening ICU stay, improve healthcare outcomes, and reduce health care costs.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston wearable biosensing company closes $13M pre-IPO round

fresh funding

Wellysis, a Seoul, South Korea-headquartered wearable biosensing company with its U.S. subsidiary based in Houston, has closed a $13.5 million pre-IPO funding round and plans to expand its Texas operations.

The round was led by Korea Investment Partners, Kyobo Life Insurance, Kyobo Securities, Kolon Investment and a co-general partner fund backed by SBI Investment and Samsung Securities, according to a news release.

Wellysis reports that the latest round brings its total capital raised to about $30 million. The company is working toward a Korea Securities Dealers Automated Quotations listing in Q4 2026 or Q1 2027.

Wellysis is known for its continuous ECG/EKG monitor with AI reporting. Its lightweight and waterproof S-Patch cardiac monitor is designed for extended testing periods of up to 14 days on a single battery charge.

The company says that the funding will go toward commercializing the next generation of the S-Patch, known as the S-Patch MX, which will be able to capture more than 30 biometric signals, including ECG, temperature and body composition.

Wellysis also reports that it will use the funding to expand its Houston-based operations, specifically in its commercial, clinical and customer success teams.

Additionally, the company plans to accelerate the product development of two other biometric products:

  • CardioAI, an AI-powered diagnostic software platform designed to support clinical interpretation, workflow efficiency and scalable cardiac analysis
  • BioArmour, a non-medical biometric monitoring solution for the sports, public safety and defense sectors

“This pre-IPO round validates both our technology and our readiness to scale globally,” Young Juhn, CEO of Wellysis, said in the release. “With FDA-cleared solutions, expanding U.S. operations, and a strong AI roadmap, Wellysis is positioned to redefine how cardiac data is captured, interpreted, and acted upon across healthcare systems worldwide.”

Wellysis was founded in 2019 as a spinoff of Samsung. Its S-Patch runs off of a Samsung Smart Health Processor. The company's U.S. subsidiary, Wellysis USA Inc., was established in Houston in 2023 and was a resident of JLABS@TMC.

Elon Musk vows to launch solar-powered data centers in space

To Outer Space

Elon Musk vowed this week to upend another industry just as he did with cars and rockets — and once again he's taking on long odds.

The world's richest man said he wants to put as many as a million satellites into orbit to form vast, solar-powered data centers in space — a move to allow expanded use of artificial intelligence and chatbots without triggering blackouts and sending utility bills soaring.

To finance that effort, Musk combined SpaceX with his AI business on Monday, February 2, and plans a big initial public offering of the combined company.

“Space-based AI is obviously the only way to scale,” Musk wrote on SpaceX’s website, adding about his solar ambitions, “It’s always sunny in space!”

But scientists and industry experts say even Musk — who outsmarted Detroit to turn Tesla into the world’s most valuable automaker — faces formidable technical, financial and environmental obstacles.

Feeling the heat

Capturing the sun’s energy from space to run chatbots and other AI tools would ease pressure on power grids and cut demand for sprawling computing warehouses that are consuming farms and forests and vast amounts of water to cool.

But space presents its own set of problems.

Data centers generate enormous heat. Space seems to offer a solution because it is cold. But it is also a vacuum, trapping heat inside objects in the same way that a Thermos keeps coffee hot using double walls with no air between them.

“An uncooled computer chip in space would overheat and melt much faster than one on Earth,” said Josep Jornet, a computer and electrical engineering professor at Northeastern University.

One fix is to build giant radiator panels that glow in infrared light to push the heat “out into the dark void,” says Jornet, noting that the technology has worked on a small scale, including on the International Space Station. But for Musk's data centers, he says, it would require an array of “massive, fragile structures that have never been built before.”

Floating debris

Then there is space junk.

A single malfunctioning satellite breaking down or losing orbit could trigger a cascade of collisions, potentially disrupting emergency communications, weather forecasting and other services.

Musk noted in a recent regulatory filing that he has had only one “low-velocity debris generating event" in seven years running Starlink, his satellite communications network. Starlink has operated about 10,000 satellites — but that's a fraction of the million or so he now plans to put in space.

“We could reach a tipping point where the chance of collision is going to be too great," said University at Buffalo's John Crassidis, a former NASA engineer. “And these objects are going fast -- 17,500 miles per hour. There could be very violent collisions."

No repair crews

Even without collisions, satellites fail, chips degrade, parts break.

Special GPU graphics chips used by AI companies, for instance, can become damaged and need to be replaced.

“On Earth, what you would do is send someone down to the data center," said Baiju Bhatt, CEO of Aetherflux, a space-based solar energy company. "You replace the server, you replace the GPU, you’d do some surgery on that thing and you’d slide it back in.”

But no such repair crew exists in orbit, and those GPUs in space could get damaged due to their exposure to high-energy particles from the sun.

Bhatt says one workaround is to overprovision the satellite with extra chips to replace the ones that fail. But that’s an expensive proposition given they are likely to cost tens of thousands of dollars each, and current Starlink satellites only have a lifespan of about five years.

Competition — and leverage

Musk is not alone trying to solve these problems.

A company in Redmond, Washington, called Starcloud, launched a satellite in November carrying a single Nvidia-made AI computer chip to test out how it would fare in space. Google is exploring orbital data centers in a venture it calls Project Suncatcher. And Jeff Bezos’ Blue Origin announced plans in January for a constellation of more than 5,000 satellites to start launching late next year, though its focus has been more on communications than AI.

Still, Musk has an edge: He's got rockets.

Starcloud had to use one of his Falcon rockets to put its chip in space last year. Aetherflux plans to send a set of chips it calls a Galactic Brain to space on a SpaceX rocket later this year. And Google may also need to turn to Musk to get its first two planned prototype satellites off the ground by early next year.

Pierre Lionnet, a research director at the trade association Eurospace, says Musk routinely charges rivals far more than he charges himself —- as much as $20,000 per kilo of payload versus $2,000 internally.

He said Musk’s announcements this week signal that he plans to use that advantage to win this new space race.

“When he says we are going to put these data centers in space, it’s a way of telling the others we will keep these low launch costs for myself,” said Lionnet. “It’s a kind of powerplay.”

Johnson Space Center and UT partner to expand research, workforce development

onward and upward

NASA’s Johnson Space Center in Houston has forged a partnership with the University of Texas System to expand collaboration on research, workforce development and education that supports space exploration and national security.

“It’s an exciting time for the UT System and NASA to come together in new ways because Texas is at the epicenter of America’s space future. It’s an area where America is dominant, and we are committed as a university system to maintaining and growing that dominance,” Dr. John Zerwas, chancellor of the UT System, said in a news release.

Vanessa Wyche, director of Johnson Space Center, added that the partnership with the UT System “will enable us to meet our nation’s exploration goals and advance the future of space exploration.”

The news release noted that UT Health Houston and the UT Medical Branch in Galveston already collaborate with NASA. The UT Medical Branch’s aerospace medicine residency program and UT Health Houston’s space medicine program train NASA astronauts.

“We’re living through a unique moment where aerospace innovation, national security, economic transformation, and scientific discovery are converging like never before in Texas," Zerwas said. “UT institutions are uniquely positioned to partner with NASA in building a stronger and safer Texas.”

Zerwas became chancellor of the UT System in 2025. He joined the system in 2019 as executive vice chancellor for health affairs. Zerwas represented northwestern Ford Bend County in the Texas House from 2007 to 2019.

In 1996, he co-founded a Houston-area medical practice that became part of US Anesthesia Partners in 2012. He remained active in the practice until joining the UT System. Zerwas was chief medical officer of the Memorial Hermann Hospital System from 2003 to 2008 and was its chief physician integration officer until 2009.

Zerwas, a 1973 graduate of the Houston area’s Bellaire High School, is an alumnus of the University of Houston and Baylor College of Medicine.