Houston-based Corva, an AI-optimized analytics company, is in the process of hiring — a lot. Photo via corva.ai

Growing Houston energy tech company plans to hire 150 new employees this year

growing gains

While the oil and gas industry may be in store for sluggish growth in 2020, that's hardly the case for Houston-based energy tech startup Corva AI LLC.

Corva — which offers a real-time data analytics platform for drilling and completion (the stage when a well is prepared for production) — added 85 employees last year, mostly in Houston. And it's on track to make 150 new hires in 2020, including software developers, researchers, drilling engineers, and data analysts, says Courtney Diezi, the company's general manager. Two-thirds of this year's new hires will work in Houston, she says.

Diezi says the company's headcount currently stands at 120, with 100 employees in Houston and 20 in Ukraine.

Corva has expanded so much and so quickly that it outgrew its previous 11,000-square-foot office and is now at The Cannon, a coworking space and innovation hub in the Energy Corridor. It's set to move later this year to a new 40,000-square-foot space at The Cannon.

Founded in 2014 by CEO Ryan Dawson, Corva has raised just $3 million in outside funding to propel its growth.

"Our business has grown exponentially at the same pace as companies raising hundreds of millions in funding," Dawson says. "While the startup world has chased endless rounds of funding with the notion of either becoming a unicorn — or dying — we have focused on creating a company that cares deeply about our employees and a business that lasts 100 years."

Dawson describes Corva as the "modern brains" of drillings and completions. Oil and gas equipment sends millions of datapoints to Corva to help make complex decisions about drilling operations, she says. About 40 customers use Corva's technology.

In a 2019 news release, Dawson said Corva gauges its success "by the number of days we save on rigs, the costs we can quantifiably cut, and the number of catastrophic events we prevent." Corva's technology has saved millions of dollars for its customers and reduced the length of drilling projects by as many as three days, he said.

"Corva's challenge is to change the behavior of drillers who work for somebody else," the Journal of Petroleum Technology reported in 2019. "The fast-growing company has no shortage of users. Retaining those customers will require convincing oil companies that the real-time drilling data and analysis is creating enough value to justify the cost."

Corva's user-focused approach to developing technology helps attract and retain customers. Executives say they consider Corva a tech company that operates in the oil and gas sector rather than an oil and gas company that happens to develop software.

"Our software platform rivals Netflix and Twitter in terms of giant datasets and real-time processing," Diezi says. "Without a core expertise and founding team in software, we wouldn't be able to provide the amazing technology we do — it's too central to what we do. Corva is the perfect mixture of oil industry veterans and software whiz kids. Our customers love to work with us because we speak their language but provide world-class products solving hard problems."

As it continues to enlarge its workforce, Corva seeks to foster a workplace that embraces both oil industry veterans and software whiz kids.

"We want to be the most admired workplace in Houston, with a Google-like status both for our amazing products and our company culture," Diezi says.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston doctor wins NIH grant to test virtual reality for ICU delirium

Virtual healing

Think of it like a reverse version of The Matrix. A person wakes up in a hospital bed and gets plugged into a virtual reality game world in order to heal.

While it may sound far-fetched, Dr. Hina Faisal, a Houston Methodist critical care specialist in the Department of Surgery, was recently awarded a $242,000 grant from the National Institute of Health to test the effects of VR games on patients coming out of major surgery in the intensive care unit (ICU).

The five-year study will focus on older patients using mental stimulation techniques to reduce incidences of delirium. The award comes courtesy of the National Institute on Aging K76 Paul B. Beeson Emerging Leaders Career Development Award in Aging.

“As the population of older adults continues to grow, the need for effective, scalable interventions to prevent postoperative complications like delirium is more important than ever,” Faisal said in a news release.

ICU delirium is a serious condition that can lead to major complications and even death. Roughly 87 percent of patients who undergo major surgery involving intubation will experience some form of delirium coming out of anesthesia. Causes can range from infection to drug reactions. While many cases are mild, prolonged ICU delirium may prevent a patient from following medical advice or even cause them to hurt themselves.

Using VR games to treat delirium is a rapidly emerging and exciting branch of medicine. Studies show that VR games can help promote mental activity, memory and cognitive function. However, the full benefits are currently unknown as studies have been hampered by small patient populations.

Faisal believes that half of all ICU delirium cases are preventable through VR treatment. Currently, a general lack of knowledge and resources has been holding back the advancement of the treatment.

Hopefully, the work of Faisal in one of the busiest medical cities in the world can alleviate that problem as she spends the next half-decade plugging patients into games to aid in their healing.

Houston scientists develop breakthrough AI-driven process to design, decode genetic circuits

biotech breakthrough

Researchers at Rice University have developed an innovative process that uses artificial intelligence to better understand complex genetic circuits.

A study, published in the journal Nature, shows how the new technique, known as “Combining Long- and Short-range Sequencing to Investigate Genetic Complexity,” or CLASSIC, can generate and test millions of DNA designs at the same time, which, according to Rice.

The work was led by Rice’s Caleb Bashor, deputy director for the Rice Synthetic Biology Institute and member of the Ken Kennedy Institute. Bashor has been working with Kshitij Rai and Ronan O’Connell, co-first authors on the study, on the CLASSIC for over four years, according to a news release.

“Our work is the first demonstration that you can use AI for designing these circuits,” Bashor said in the release.

Genetic circuits program cells to perform specific functions. Finding the circuit that matches a desired function or performance "can be like looking for a needle in a haystack," Bashor explained. This work looked to find a solution to this long-standing challenge in synthetic biology.

First, the team developed a library of proof-of-concept genetic circuits. It then pooled the circuits and inserted them into human cells. Next, they used long-read and short-read DNA sequencing to create "a master map" that linked each circuit to how it performed.

The data was then used to train AI and machine learning models to analyze circuits and make accurate predictions for how untested circuits might perform.

“We end up with measurements for a lot of the possible designs but not all of them, and that is where building the (machine learning) model comes in,” O’Connell explained in the release. “We use the data to train a model that can understand this landscape and predict things we were not able to generate data on.”

Ultimately, the researchers believe the circuit characterization and AI-driven understanding can speed up synthetic biology, lead to faster development of biotechnology and potentially support more cell-based therapy breakthroughs by shedding new light on how gene circuits behave, according to Rice.

“We think AI/ML-driven design is the future of synthetic biology,” Bashor added in the release. “As we collect more data using CLASSIC, we can train more complex models to make predictions for how to design even more sophisticated and useful cellular biotechnology.”

The team at Rice also worked with Pankaj Mehta’s group in the department of physics at Boston University and Todd Treangen’s group in Rice’s computer science department. Research was supported by the National Institutes of Health, Office of Naval Research, the Robert J. Kleberg Jr. and Helen C. Kleberg Foundation, the American Heart Association, National Library of Medicine, the National Science Foundation, Rice’s Ken Kennedy Institute and the Rice Institute of Synthetic Biology.

James Collins, a biomedical engineer at MIT who helped establish synthetic biology as a field, added that CLASSIC is a new, defining milestone.

“Twenty-five years ago, those early circuits showed that we could program living cells, but they were built one at a time, each requiring months of tuning,” said Collins, who was one of the inventors of the toggle switch. “Bashor and colleagues have now delivered a transformative leap: CLASSIC brings high-throughput engineering to gene circuit design, allowing exploration of combinatorial spaces that were previously out of reach. Their platform doesn’t just accelerate the design-build-test-learn cycle; it redefines its scale, marking a new era of data-driven synthetic biology.”