The benefits of construction digital twins, such as improved planning and design, streamlined collaboration, and effective risk management, are transforming how projects are executed. Photo via Getty Images

The construction industry is no stranger to embracing technological advancements, and one of the latest breakthroughs is the advent of construction digital twin technology.

Blending the virtual and physical worlds, construction digital twins offer immense potential for enhancing efficiency, reducing costs, and improving decision-making in construction projects.

It is a fascinating and ever-changing world of technology in construction digital twin technology and the following information explores its key components, benefits, and real-world applications in the construction sector.

What is a construction digital twin?

A construction digital twin is a virtual replica of a physical asset, process, or system that integrates real-time data from various sources to provide a holistic and dynamic representation. It encompasses a portion of the entire lifecycle of the project, potentially starting from planning and design into construction, commissioning, and data collection for ongoing maintenance.

The key components of a construction digital twin include the physical asset, sensors, data acquisition systems, connectivity infrastructure, cloud platforms, and advanced analytics. Various tools or platforms can be used at different stages of a project.

Skanska, a construction and development company, has created an internal hybrid approach combining a digital twin model with a custom analytics dashboard. The process allows for tracking production control during construction. What is used is a less-is-more approach to manual data entry into models and link to automated external data sources, which are combined and analyzed together in a separate dashboard. These color-coded models are combined with external data for schedule, cost, and man hour data for predictive analysis and production rates.

Improved planning and design

Digital twins allow design and construction professionals to simulate and optimize designs with a virtual model of the building before physically implementing them. This capability enables early detection and resolution of design flaws, reducing rework and costly delays. Adjacent building and city data can inform early design decisions. By leveraging the existing data from a digital twin, renovation projects can streamline processes, reduce risks, improve efficiency, and make informed design decisions, ultimately resulting in more successful and cost-effective renovations.

Enhanced construction processes

A construction digital twin allows stakeholders to visualize and simulate the project, analyze potential issues, optimize workflows, and make informed decisions. Key data sources include: installation, schedule, man hours, and cost. Additional real-time data from sensors embedded in physical assets can be fed into construction digital twins, enabling real-time monitoring and analysis. Project teams can enhance collaboration, improve efficiency, maintain schedule, reduce costs, and minimize risks throughout the construction process.

Effective risk management

Digital twins enable construction companies to simulate and analyze potential risks, such as structural weaknesses and environmental or safety hazards. Builders and their clients are at an advantage since they can address these risks in the virtual environment and significantly reduce the occurrence of accidents and associated liabilities.

Streamlined collaboration

Construction digital twins act as a shared platform for all stakeholders involved in a construction project, including architects, engineers, contractors, and facility managers. This flow of information fosters seamless collaboration, improves communication, and results in better decision-making through a data-driven environment. Solutions vary per stage and parties involved.

Real-world applications

Construction digital twin technology is already finding practical application in the construction industry, including locally at 1550 on The Green, Skanska’s state-of-the art, sustainable office building bringing the outdoors in.

Smart building construction

By creating a digital twin of a smart building, companies can optimize energy efficiency, HVAC systems, and space. The real-time monitoring of energy consumption and occupancy patterns combined with as-built BIM and systems data allows for predictive maintenance. Automations and AI assisted controls are also on the horizon.

Bringing it all together

Construction digital twin technology is poised to revolutionize the construction industry. By merging the virtual and physical realms, it enables construction professionals to make more informed decisions, enhance efficiency, and minimize risks.

The benefits of construction digital twins, such as improved planning and design, streamlined collaboration, and effective risk management, are transforming how projects are executed. As this technology continues to evolve, there are bound to be greater advancements in construction practices, ultimately leading to safer, smarter, and more sustainable built environments. Key data points and use cases vary per phase and stakeholder, and digital twins are a great asset throughout the project lifecycle.

------

Edwin Bailey is senior preconstruction technologist at Skanska, a leading multi-national project development and construction group, in Houston.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Axiom Space-tested cancer drug advances to clinical trials

mission critical

A cancer-fighting drug tested aboard several Axiom Space missions is moving forward to clinical trials.

Rebecsinib, which targets a cancer cloning and immune evasion gene, ADAR1, has received FDA approval to enter clinical trials under active Investigational New Drug (IND) status, according to a news release. The drug was tested aboard Axiom Mission 2 (Ax-2) and Axiom Mission 3 (Ax-3). It was developed by Aspera Biomedicine, led by Dr. Catriona Jamieson, director of the UC San Diego Sanford Stem Cell Institute (SSCI).

The San Diego-based Aspera team and Houston-based Axiom partnered to allow Rebecsinib to be tested in microgravity. Tumors have been shown to grow more rapidly in microgravity and even mimic how aggressive cancers can develop in patients.

“In terms of tumor growth, we see a doubling in growth of these little mini-tumors in just 10 days,” Jamieson explained in the release.

Rebecsinib took part in the patient-derived tumor organoid testing aboard the International Space Station. Similar testing is planned to continue on Axiom Station, the company's commercial space station that's currently under development.

Additionally, the drug will be tested aboard Ax-4 under its active IND status, which was targeted to launch June 25.

“We anticipate that this monumental mission will inform the expanded development of the first ADAR1 inhibitory cancer stem cell targeting drug for a broad array of cancers," Jamieson added.

According to Axiom, the milestone represents the potential for commercial space collaborations.

“We’re proud to work with Aspera Biomedicines and the UC San Diego Sanford Stem Cell Institute, as together we have achieved a historic milestone, and we’re even more excited for what’s to come,” Tejpaul Bhatia, the new CEO of Axiom Space, said in the release. “This is how we crack the code of the space economy – uniting public and private partners to turn microgravity into a launchpad for breakthroughs.”

Chevron enters the lithium market with major Texas land acquisition

to market

Chevron U.S.A., a subsidiary of Houston-based energy company Chevron, has taken its first big step toward establishing a commercial-scale lithium business.

Chevron acquired leaseholds totaling about 125,000 acres in Northeast Texas and southwest Arkansas from TerraVolta Resources and East Texas Natural Resources. The acreage contains a high amount of lithium, which Chevron plans to extract from brines produced from the subsurface.

Lithium-ion batteries are used in an array of technologies, such as smartwatches, e-bikes, pacemakers, and batteries for electric vehicles, according to Chevron. The International Energy Agency estimates lithium demand could grow more than 400 percent by 2040.

“This acquisition represents a strategic investment to support energy manufacturing and expand U.S.-based critical mineral supplies,” Jeff Gustavson, president of Chevron New Energies, said in a news release. “Establishing domestic and resilient lithium supply chains is essential not only to maintaining U.S. energy leadership but also to meeting the growing demand from customers.”

Rania Yacoub, corporate business development manager at Chevron New Energies, said that amid heightening demand, lithium is “one of the world’s most sought-after natural resources.”

“Chevron is looking to help meet that demand and drive U.S. energy competitiveness by sourcing lithium domestically,” Yacoub said.

---

This article originally appeared on EnergyCapital.