Nearly 20 years in the making, The Ismaili Center, Houston, opens in December 2025. Photo by Iwan Baan

The long-awaited Ismaili Center, Houston is set to open to the public next month. The 11-acre site has been painstakingly designed and constructed to offer indoor and outdoor public spaces for Houstonians to enjoy, connect, and engage. As the only Ismaili Center in the United States — and seventh in the world — it joins its international communities in London, Vancouver, Lisbon, Dubai, Dushanbe, and Toronto.

Nearly 20 years in the making, the Ismaili Center, Houston features a prayer hall, rotating art installations, a black box theater, a cafe, numerous social halls for weddings and other events, and nine acres of outdoor space and landscaped botanical gardens. Involved parties hope that the community will see the space as an extension of the neighboring parks along the bayou, and have included a garden entrance to the north lawn and gardens at the corner of Montrose Boulevard and Allen Parkway.

While Houston is known for its many community engagement centers, the architects and designers believe that the seamless integration of indoor and outdoor spaces sets the Ismaili Center, Houston apart from all others.

“What we know is the connections between buildings, environment, quality of life, and landscape — this is nothing new,” structural and facade engineer Hanif Kara says. “But, certainly, it’s hard to see that in other developments, particularly when they are done by developers. It’s quite difficult to find community spaces, and to see how quality of life is improved for everyone. I think we’ve all experienced that kind of hope that it will play out something like this.”

Designed by Farshid Moussavi Architecture and Nelson Byrd Woltz Landscape Architects, the remarkable 11-acre site is designed both to receive LEED Gold certification and to withstand the tests of Houston’s sometimes extreme weather conditions.

Principal architect Farshid Moussavi looks forward to seeing the Houston community utilize the space she’s worked so hard to deliver: “We’ve given the hardware to the community, now the software needs to come in. So I hope that there will be music recitals, or lectures, or book fairs, or other kinds of markets that can happen—even simultaneously. This is not an experiment, it’s the seventh in the world.”

Community welcome events are scheduled for December 12 and 13, but, until then, here are 10 features and things to know about the Ismaili Center, Houston.

What is the Ismaili Center, Houston?

“The use of the building is really meant for, or our hope, is that we are able to—on an enhanced view of what the community does today—have engagement on service projects, arts and culture, interfaith dialogue, and even just in bringing people together,” Omar Samji, Ismaili Council for the United States of America, says. “The notion of bringing people together in a place where it is easy to create connections because it’s an open space, and because it’s specifically designed to be a place where people interact and where people find commonality. Because whether you’re out in the gardens, or on the environs, or in the atrium, this enables connection.”

Who is His Highness the Aga Khan?

His Highness Prince Rahim Aga Khan V is the 50th hereditary Imam (spiritual leader) of the Shia Ismaili Muslims and a direct descendant of the Prophet Muhammad. He was educated at Philipps Academy in Andover and Brown University (Class of 1995). He became Imam in February 2025 upon the passing of his father, His Highness Prince Karim Aga Khan IV.

The Aga Khan promotes an understanding of Islam rooted in values of generosity, tolerance, pluralism, environmental stewardship, and the shared unity of humanity. He also chairs the Aga Khan Development Network (AKDN), one of the world’s largest private development agencies, which works across more than 30 countries to improve quality of life for marginalized communities regardless of faith or background.

The scale

The center stretches across an 11-acre site along Montrose Boulevard, from West Dallas to Allen Parkway. The physical building is 150,000 square feet, leaving nine acres for garden spaces on both the north and south sides of the building. The south side of the property is more formal, with gardens and community spaces that flank an 80-foot reflection pool and other water features. The gardens on the north side of the building are more informal, but densely planted and vast.

Photo by Iwan Baan

The creation

The development of the Ismaili Center was led by the Ismaili Council. It was initiated by His Highness Prince Karim Aga Khan IV (1936-2025), and completed under the leadership of his eldest son, Prince Rahim Aga Khan V.

The project was designed and constructed by a team of both local and international firms. Farshid Moussavi Architecture joined forces with structural and facade engineer Hanif Kara, co-founder and creative director of AKT II. DLR Group is the architect and engineer of record, while contractor McCarthy Building Companies built the project. Thomas Woltz, senior principal and owner of landscape architecture firm Nelson Byrd Woltz, along with principal Jeff Aten taking lead on the nine acres of garden space. The project is targeting LEED Gold certification.

The focus on native Texas plants and trees

The center will be recognized as a leading cultural asset for the City of Houston, complementing nearby institutions such as The Menil Collection, Rothko Chapel, Asia Society Texas, and the Museum of Fine Arts, Houston. While the surrounding gardens will add to the other notable Nelson Byrd Woltz projects within close proximity at Memorial Park, Rothko Chapel, and Rice University.

“We’ve been building massive projects in Houston for 12 years,” Woltz says. “We know the horticultural community in the region, and we did a deep, deep dive in ecological research to understand ‘What are the native plants of whatever region?’ It’s just baked into our process. Right when we are starting any project in Houston—right to the river. Look at the soils, ‘What are the plants appropriate to that place?’ Its solar aspect, its humidity, it’s moisture in soils, the shadow of the building.

But then, this idea of taking a section across the state of Texas, so that each of those distinct ecological regions is represented by one of the terraced gardens — so it’s very clear. It’s a diagram of the state of Texas and all of its native plants. This is functioning like a botanic garden and a repository for biodiversity — this is work in service.”

The eco-friendly exterior

The exterior of the building is clad in stone, a durable material with low embodied carbon. The stone cladding is a rainscreen over in-situ ‘fair-faced’ concrete walls, exposed on the interior to minimize additional material use. The concrete mix used has replaced 35-62 percent of Portland cement with fly ash and slag, reducing CO2 emissions by roughly 30 percent compared to standard mixes. The exterior stone rainscreen uses smaller tiles to increase the stone yield, utilizing 20-25 percent more of the irregular blocks they are cut from. This reduction in waste has also lent itself to crafting the cladding in a unique way.

The tessellation of the stone pieces changes across the building's surfaces to create different patterns on different sides of the buildings and at the corners. Relief stone tiles are used to add texture to the facades.

The space for outdoor events

The north-facing botanical gardens that will accommodate the 200-year flood plain offer a 27 foot gradient toward the building. This allowed for various levels of seating and gathering areas that culminate at an elevated terrace that will act as a stage for various events such as plays and concerts. Attendees can stretch out and enjoy the shows from an extensive lawn area that is surrounded by dense gardens of native trees and plants.

The black box theater

A 2,600-square-foot black box multipurpose space which seats 125 people is found on the second floor of the building’s west wing. It can host public events, such as exhibitions, film screenings, theatrical performances, music recitals, and other artistic programs throughout the year. It will also serve as a flexible space for teaching and learning. With acoustic isolation to surrounding spaces and the mechanical mezzanine above, it is designed to operate simultaneously without disrupting other events in the building. Design includes an upper-level control room, pipe grid, and flexible drapery and seating configurations to allow for a wide variety of programming.

The cafe

The center’s café is a 1,600-square-foot, double-height space located in the west wing (Montrose side) that opens onto an enormous terrace, offering visitors the option to enjoy their coffee or food outdoors. The terrace near the cafe is lined by an exterior wall and long, trough-style fountains that aid in noise reduction from Montrose Boulevard. The second-floor wall overlooking the Café is fully glazed, creating visual connection with the levels above.

The prayer hall

The prayer hall is 12,240 square feet, featuring a unique structural system of seven interlocking squares, formed from steel beams spanning the 115-by-115-foot open space. These beams are clad in concrete to enhance durability, beneath which lies a two-layer perforated aluminum ceiling with integrated diffused lighting. Its intricate pattern recalls the traditional jālī screens of Islamic architecture creating a soft, seemingly infinite ceiling effect, adding to the serenity of the prayer hall.

---

A version of this article first appeared on CultureMap.com

Early and effective stakeholder outreach is a key part of a successful project. Getty Images

Identifying and engaging community stakeholders from the start is key to a success startup

Support systems

Often times we think of technology as innovation. But innovation and the success derived from it is not always about technological advances.

Technological advances have driven innovation in all sectors of our economy. Technology and social media have driven social change and changed how stakeholders— the public and outside influencers — impact infrastructure and construction projects, and how they advocate with policy leaders. This includes the energy, utilities, infrastructure, real estate projects, and manufacturing industries.

Often times the innovation from technology is about a new way of thinking and how one adapts to, works with, and embraces technology and how it impacts a business or an industry. It is about a willingness to do things differently because technology now drives us to think creatively and differently than in the past. It is taking a new approach to how one manages risk, solves problems and meets the challenges facing a business or an industry.

Technology has changed how we communicate as a culture. It has changed how the public communicates with business and how business has to communicate with the public. Because of the growth and influence of social media in our culture, business must now mange a new kind of risk in the risk register of a project. It has to change how it interacts and communicates with stakeholders. It has to be more attentive and listen actively compared to how it operated in the past. Gone are the days when a project manager, private equity firm/investor or company developing a project can "keep their head down so they don't get shot at."

I listed the many industries that are impacted by social media. There is no better example of an industry that has had to change and use innovative and new ways of communicating due to technology. Regardless of the energy project, the development of oil & gas, building a pipeline, new utility lines, a refinery or chemical facility the industry now has to assess who their stakeholders are, listen to them attentively, and develop a strategic plan for outreach. If a company changes how they interact with stakeholders the associated risks will be minimized, mitigated and/or reduced.

There are a plethora of energy projects I can list that highlight how a business failed to innovate in response to how they failed to adapt to, work with and embrace the technology of social media and how it impacts them. One project sums it up, Keystone.

Effective stakeholder outreach has four parts: identification, analysis, prioritization and engagement.

Identification
The first step is to identify the stakeholders. This includes those who will be directly or indirectly impacted such as local, state and federal political leaders, NGOs, media, faith-based groups, landowners, civic leaders, nearby businesses and advocacy groups.

Analysis
The analysis is an evaluation of possible risks related to the stakeholders and the community where the project is planned such as stakeholders who might be opposed to the project, have concerns or be able to influence the process in any way. Have there been issues in the community or legislative bodies that might have a negative impact?

Prioritization
Prioritization is the process of taking the results from the analysis of stakeholders and determining what risks or issues exist. These risks are ranked. Strategies and tactics are developed to address and mitigate them. Finally, a determination is made regarding how and when to communicate with stakeholders.

Engagement
Engagement is the final part of stakeholder outreach. This is the process of communicating with stakeholders to explain the project and how they will be impacted. It will also serve as an opportunity to solicit feedback and insight as well as to continue analyzing risks from stakeholders.

Early and effective stakeholder outreach is a key part of a successful project. It is a new and innovative way of thinking about how to understand and mitigate project risk. It is a willingness to change because technology has shifted how our culture communicates, advocates and engages with business, policy leaders and one another.

------

Andrew Biar is founder and president of Strategic Public Affairs, a government relations and PR/communications firm based in Houston.
Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston researchers develop material to boost AI speed and cut energy use

ai research

A team of researchers at the University of Houston has developed an innovative thin-film material that they believe will make AI devices faster and more energy efficient.

AI data centers consume massive amounts of electricity and use large cooling systems to operate, adding a strain on overall energy consumption.

“AI has made our energy needs explode,” Alamgir Karim, Dow Chair and Welch Foundation Professor at the William A. Brookshire Department of Chemical and Biomolecular Engineering at UH, explained in a news release. “Many AI data centers employ vast cooling systems that consume large amounts of electricity to keep the thousands of servers with integrated circuit chips running optimally at low temperatures to maintain high data processing speed, have shorter response time and extend chip lifetime.”

In a report recently published in ACS Nano, Karim and a team of researchers introduced a specialized two-dimensional thin film dielectric, or electric insulator. The film, which does not store electricity, could be used to replace traditional, heat-generating components in integrated circuit chips, which are essential hardware powering AI.

The thinner film material aims to reduce the significant energy cost and heat produced by the high-performance computing necessary for AI.

Karim and his former doctoral student, Maninderjeet Singh, used Nobel prize-winning organic framework materials to develop the film. Singh, now a postdoctoral researcher at Columbia University, developed the materials during his doctoral training at UH, along with Devin Shaffer, a UH professor of civil engineering, and doctoral student Erin Schroeder.

Their study shows that dielectrics with high permittivity (high-k) store more electrical energy and dissipate more energy as heat than those with low-k materials. Karim focused on low-k materials made from light elements, like carbon, that would allow chips to run cooler and faster.

The team then created new materials with carbon and other light elements, forming covalently bonded sheetlike films with highly porous crystalline structures using a process known as synthetic interfacial polymerization. Then they studied their electronic properties and applications in devices.

According to the report, the film was suitable for high-voltage, high-power devices while maintaining thermal stability at elevated operating temperatures.

“These next-generation materials are expected to boost the performance of AI and conventional electronics devices significantly,” Singh added in the release.

Houston to become 'global leader in brain health' and more innovation news

Top Topics

Editor's note: The most-read Houston innovation news this month is centered around brain health, from the launch of Project Metis to Rice''s new Amyloid Mechanism and Disease Center. Here are the five most popular InnovationMap stories from December 1-15, 2025:

1. Houston institutions launch Project Metis to position region as global leader in brain health

The Rice Brain Institute, UTMB's Moody Brain Health Institute and Memorial Hermann’s comprehensive neurology care department will lead Project Metis. Photo via Unsplash.

Leaders in Houston's health care and innovation sectors have joined the Center for Houston’s Future to launch an initiative that aims to make the Greater Houston Area "the global leader of brain health." The multi-year Project Metis, named after the Greek goddess of wisdom and deep thought, will be led by the newly formed Rice Brain Institute, The University of Texas Medical Branch's Moody Brain Health Institute and Memorial Hermann’s comprehensive neurology care department. The initiative comes on the heels of Texas voters overwhelmingly approving a ballot measure to launch the $3 billion, state-funded Dementia Prevention and Research Institute of Texas (DPRIT). Continue reading.

2.Rice University researchers unveil new model that could sharpen MRI scans

New findings from a team of Rice University researchers could enhance MRI clarity. Photo via Unsplash.

Researchers at Rice University, in collaboration with Oak Ridge National Laboratory, have developed a new model that could lead to sharper imaging and safer diagnostics using magnetic resonance imaging, or MRI. In a study published in The Journal of Chemical Physics, the team of researchers showed how they used the Fokker-Planck equation to better understand how water molecules respond to contrast agents in a process known as “relaxation.” Continue reading.

3. Rice University launches new center to study roots of Alzheimer’s and Parkinson’s

The new Amyloid Mechanism and Disease Center will serve as the neuroscience branch of Rice’s Brain Institute. Photo via Unsplash.

Rice University has launched its new Amyloid Mechanism and Disease Center, which aims to uncover the molecular origins of Alzheimer’s, Parkinson’s and other amyloid-related diseases. The center will bring together Rice faculty in chemistry, biophysics, cell biology and biochemistry to study how protein aggregates called amyloids form, spread and harm brain cells. It will serve as the neuroscience branch of the Rice Brain Institute, which was also recently established. Continue reading.

4. Baylor center receives $10M NIH grant to continue rare disease research

BCM's Center for Precision Medicine Models has received funding that will allow it to study more complex diseases. Photo via Getty Images

Baylor College of Medicine’s Center for Precision Medicine Models has received a $10 million, five-year grant from the National Institutes of Health that will allow it to continue its work studying rare genetic diseases. The Center for Precision Medicine Models creates customized cell, fly and mouse models that mimic specific genetic variations found in patients, helping scientists to better understand how genetic changes cause disease and explore potential treatments. Continue reading.

5. Luxury transportation startup connects Houston with Austin and San Antonio

Shutto is a new option for Houston commuters. Photo courtesy of Shutto

Houston business and leisure travelers have a luxe new way to hop between Texas cities. Transportation startup Shutto has launched luxury van service connecting San Antonio, Austin, and Houston, offering travelers a comfortable alternative to flying or long-haul rideshare. Continue reading.

Texas falls to bottom of national list for AI-related job openings

jobs report

For all the hoopla over AI in the American workforce, Texas’ share of AI-related job openings falls short of every state except Pennsylvania and Florida.

A study by Unit4, a provider of cloud-based enterprise resource planning (ERP) software for businesses, puts Texas at No. 49 among the states with the highest share of AI-focused jobs. Just 9.39 percent of Texas job postings examined by Unit4 mentioned AI.

Behind Texas are No. 49 Pennsylvania (9.24 percent of jobs related to AI) and No. 50 Florida (9.04 percent). One spot ahead of Texas, at No. 47, is California (9.56 percent).

Unit4 notes that Texas’ and Florida’s low rankings show “AI hiring concentration isn’t necessarily tied to population size or GDP.”

“For years, California, Texas, and New York dominated tech hiring, but that’s changing fast. High living costs, remote work culture, and the democratization of AI tools mean smaller states can now compete,” Unit4 spokesperson Mark Baars said in a release.

The No. 1 state is Wyoming, where 20.38 percent of job openings were related to AI. The Cowboy State was followed by Vermont at No. 2 (20.34 percent) and Rhode Island at No. 3 (19.74 percent).

“A company in Wyoming can hire an AI engineer from anywhere, and startups in Vermont can build powerful AI systems without being based in Silicon Valley,” Baars added.

The study analyzed LinkedIn job postings across all 50 states to determine which ones were leading in AI employment. Unit4 came up with percentages by dividing the total number of job postings in a state by the total number of AI-related job postings.

Experts suggest that while states like Texas, California and Florida “have a vast number of total job postings, the sheer volume of non-AI jobs dilutes their AI concentration ratio,” according to Unit4. “Moreover, many major tech firms headquartered in California are outsourcing AI roles to smaller, more affordable markets, creating a redistribution of AI employment opportunities.”