The University of Houston's College of Technology is looking to optimize the shopping experience. Photo via UH.edu

A new AI-powered lab at the University of Houston will supply real-time intelligence about the behavior of retail shoppers to help spur development of new technology for the retail industry.

The University of Houston College of Technology and Houston-based Relationshop announced the launch of the AI Retail Innovation Lab on November 10. Relationshop provides digital engagement and shopper loyalty technology to customers like Albertsons, United Supermarkets, Save On Foods, Market Street, and Big Y Foods.

The cloud-based lab, located at the College of Technology building in Sugar Land, will enable students, faculty, and industry professionals from across the U.S. to sift through in-store and online shopper data and then come up with new technology for the retail sector.

"This academic and commercial partnership with Relationshop accelerates the understanding and advancement of applied technology to keep pace with the unparalleled growth of digital retail as a result of COVID," Anthony Ambler, dean of the UH College of Technology, says in a news release.

The news release indicates new technology arising from the lab-supplied data "will optimize the shopper journey through more personalized and curated digital interactions across all forms of digital engagement and commerce … ."

Randy Crimmins, president of Relationshop, says his company will work alongside UH faculty and data science teams to advance the use of AI and big data in the retail sector.

"We see this partnership as a perfect blending of our strengths, with great synergy in the incredible work they are doing in academia, and our key areas of focus and experience in the retail marketplace," Crimmins says.

The AI lab, part of the College of Technology's Advanced Technology Innovation & Research Center, also will be a hub for industry training, undergraduate and graduate studies, and other initiatives.

The lab's activities will be carried out in concert with the AI Innovation Consortium, a think tank of IT and advanced technology thought leaders. Aside from UH, members of the consortium include Pennsylvania State University, Louisiana State University, and the University of Louisville.

The UH announcement comes two days after the official debut of a retail innovation lab at McGill University in Montreal. The lab, which includes a "fully frictionless" Couche-Tard Connecté convenience store, fosters collaboration among key players in the retail, emerging technology, and startup communities.

"By combining artificial intelligence and retail management, this retail innovation lab at the Bensadoun School of Retail Management will allow our researchers to develop new initiatives and technologies to improve the customer experience for the retail sector with the help of industry partners," says professor Morty Yalovsky, dean of McGill's Desautels Faculty of Management.

In the U.S., Alimentation Couche-Tard is the parent company of the Circle K chain of convenience stores. Circle K currently is rolling out frictionless technology, including AI-supported self-checkout systems, at stores in Tempe and Tucson, Arizona.

UH's Sugar Land campus has a new innovation hub focused on machine learning in the energy industry. Photo via UH.edu

University of Houston launches new AI lab geared toward oilfield tech

The University of Houston at Sugar Land is now home to an innovative lab that will work to find new ways to use artificial intelligence in the oilfield.

Dubbed the Artificial Intelligence Industry Incubator and Digital Oilfield Lab at the University of Houston, the facility will allow faculty, students, and energy professionals to develop technologies and solutions to increase efficiency and boost oil field safety through machine learning, according to a release from UH.

The lab opened in late 2020 and is part of the College of Technology's Advanced Technology and Innovation Laboratory. It represents a partnership with the UH College of Technology and the AI Innovation Consortium based in Louisville, Kentucky.

The consortium also includes Pennsylvania State University, the University of Louisville, Louisiana State University, and a number of corporations.

According to the release from UH, several companies have already agreed to work with the lab on projects that will find ways to use AI for predictive analytics, visual inspection, and health and safety measures.

"This incubator program emphasizes the need to build projects grounded in clear business value, with technologically rich and hands-on initiatives, and an engaging industry/academia partnership," Konrad Konarski, chair and director of operations at AIIC, says in a statement. "This allows us to focus on the most relevant AI technologies that have immediate impact and value to the oil and gas industry."

Too, the lab aims to provide students with valuable experiences that they can likely leverage into a job upon graduation.

"The laboratory and incubator will allow our students to contribute to the various applied research and proof of concept work currently underway and in the future," David Crawley, professor of practice in the College of Technology, says in a statement. "This includes working with the AIIC's commercial partners to create opportunities to move their incubator experience and advanced academic background into jobs at participating operations."

The university has also made headway in recent months using machine learning to better the search for "super hard" materials, such as diamonds. It also launched a new drug discovery institute in November.
Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice University lands $18M to revolutionize lymphatic disease detection

fresh funding

An arm of the U.S. Department of Health and Human Services has awarded $18 million to scientists at Rice University for research that has the potential to revolutionize how lymphatic diseases are detected and help increase survivability.

The lymphatic system is the network of vessels all over the body that help eliminate waste, absorb fat and maintain fluid balance. Diseases in this system are often difficult to detect early due to the small size of the vessels and the invasiveness of biopsy testing. Though survival rates of lymph disease have skyrocketed in the United States over the last five years, it still claims around 200,000 people in the country annually.

Early detection of complex lymphatic anomalies (CLAs) and lymphedema is essential in increasing successful treatment rates. That’s where Rice University’s SynthX Center, directed by Han Xiao and Lei Li, an assistant professor of electrical and computer engineering, comes in.

Aided by researchers from Texas Children’s Hospital, Baylor College of Medicine, the University of Texas at Dallas and the University of Texas Southwestern Medical Center, the center is pioneering two technologies: the Visual Imaging System for Tracing and Analyzing Lymphatics with Photoacoustics (VISTA-LYMPH) and Digital Plasmonic Nanobubble Detection for Protein (DIAMOND-P).

Simply put, VISTA-LYMPH uses photoacoustic tomography (PAT), a combination of light and sound, to more accurately map the tiny vessels of the lymphatic system. The process is more effective than diagnostic tools that use only light or sound, independent of one another. The research award is through the Advanced Research Projects Agency for Health (ARPA-H) Lymphatic Imaging, Genomics and pHenotyping Technologies (LIGHT) program, part of the U.S. HHS, which saw the potential of VISTA-LYMPH in animal tests that produced finely detailed diagnostic maps.

“Thanks to ARPA-H’s award, we will build the most advanced PAT system to image the body’s lymphatic network with unprecedented resolution and speed, enabling earlier and more accurate diagnosis,” Li said in a news release.

Meanwhile, DIAMOND-P could replace the older, less exact immunoassay. It uses laser-heated vapors of plasmonic nanoparticles to detect viruses without having to separate or amplify, and at room temperature, greatly simplifying the process. This is an important part of greater diagnosis because even with VISTA-LYMPH’s greater imaging accuracy, many lymphatic diseases still do not appear. Detecting biological markers is still necessary.

According to Rice, the efforts will help address lymphatic disorders, including Gorham-Stout disease, kaposiform lymphangiomatosis and generalized lymphatic anomaly. They also could help manage conditions associated with lymphatic dysfunction, including cancer metastasis, cardiovascular disease and neurodegeneration.

“By validating VISTA-LYMPH and DIAMOND-P in both preclinical and clinical settings, the team aims to establish a comprehensive diagnostic pipeline for lymphatic diseases and potentially beyond,” Xiao added in the release.

The ARPA-H award funds the project for up to five years.

Houston doctor wins NIH grant to test virtual reality for ICU delirium

Virtual healing

Think of it like a reverse version of The Matrix. A person wakes up in a hospital bed and gets plugged into a virtual reality game world in order to heal.

While it may sound far-fetched, Dr. Hina Faisal, a Houston Methodist critical care specialist in the Department of Surgery, was recently awarded a $242,000 grant from the National Institute of Health to test the effects of VR games on patients coming out of major surgery in the intensive care unit (ICU).

The five-year study will focus on older patients using mental stimulation techniques to reduce incidences of delirium. The award comes courtesy of the National Institute on Aging K76 Paul B. Beeson Emerging Leaders Career Development Award in Aging.

“As the population of older adults continues to grow, the need for effective, scalable interventions to prevent postoperative complications like delirium is more important than ever,” Faisal said in a news release.

ICU delirium is a serious condition that can lead to major complications and even death. Roughly 87 percent of patients who undergo major surgery involving intubation will experience some form of delirium coming out of anesthesia. Causes can range from infection to drug reactions. While many cases are mild, prolonged ICU delirium may prevent a patient from following medical advice or even cause them to hurt themselves.

Using VR games to treat delirium is a rapidly emerging and exciting branch of medicine. Studies show that VR games can help promote mental activity, memory and cognitive function. However, the full benefits are currently unknown as studies have been hampered by small patient populations.

Faisal believes that half of all ICU delirium cases are preventable through VR treatment. Currently, a general lack of knowledge and resources has been holding back the advancement of the treatment.

Hopefully, the work of Faisal in one of the busiest medical cities in the world can alleviate that problem as she spends the next half-decade plugging patients into games to aid in their healing.