The $116.9 million agreement will task Intuitive Machines with delivering six science and technology payloads to the moon. Photo courtesy of Intuitive Machines

NASA is again entrusting a Houston space business with lunar deliveries.

Intuitive Machines (Nasdaq: LUNR, LUNRW) has secured its fourth contract with NASA’s Commercial Lunar Payload Services, or CLPS, program. The $116.9 million agreement will task Intuitive Machines with delivering six science and technology payloads, which will include one European Space Agency-led drill suite to the Moon’s South Pole.

“Over the last several years, we’ve witnessed NASA’s successful Artemis I mission and the campaign’s progress toward sustainably returning humans to the surface of the Moon, highlighting the importance of autonomous missions that advance humanity’s understanding of the Moon and the commercial services required to support the industry,” Intuitive Machines CEO Steve Altemus says in a news release. “Intuitive Machines looks forward to working closely with the NASA team to deliver mission success once again.”

The company outlined some of the technology involved in the contract:

  • PROSPECT, or Package for Resource Observation and In-Situ Prospecting for Exploration, Characterization, and Testing, which is led by the European Space Agency, is a suite of instruments that will extract samples from beneath the lunar surface to identify possible volatiles (water, ice, or gas) trapped at extremely cold temperatures.
  • Managed by NASA’s Goddard Space Flight Center, Laser Retroreflector Array (LRA) is a collection of eight retroreflectors that enable precision lasers to measure the distance between the orbiting or landing spacecraft to the reflector on the lander.
  • Surface Exosphere Alterations by Landers (SEAL), which will investigate the chemical response of lunar regolith to the thermal, physical, and chemical disturbances generated during a landing and evaluate contaminants injected into the regolith by the lander, will give insight into how a spacecraft landing might affect the composition of samples collected nearby. The project is managed by NASA’s Goddard Space Flight Center.
  • Fluxgate Magnetometer (MAG) will characterize certain magnetic fields to improve the understanding of energy and particle pathways at the lunar surface and is managed by NASA’s Goddard Space Flight Center.
  • Managed by the Laboratory for Atmospheric and Space Physics at the University of Colorado at Boulder, Lunar Compact Infrared Imaging System (L-CIRiS) will deploy a radiometer – a device that measures infrared wavelengths of light – to explore the Moon’s surface composition, map its surface temperature distribution, and demonstrate the instrument’s feasibility for future lunar resource utilization activities.

Intuitive Machines is currently working on its second lunar mission, which is scheduled to be delivered in late 2024.

Last month, Intuitive Machines signed a deal with Houston-based launch services company SEOPS to offer lunar rideshare services. Under the deal, Intuitive Machines will enable SEOPS to deliver customers' payloads to the surface of the moon, as well as to Lagrange points and geostationary transfer orbits. Essentially, this will let SEOPS hitch a ride on missions already planned by Intuitive Machines.

In April, Intuitive Machines was one of three companies chosen by NASA to perform preliminary work on building a lunar terrain vehicle that would enable astronauts to travel on the moon’s surface so they can conduct scientific research and prepare for human missions to Mars.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

10 most-promising energy tech startups named at annual Houston event

top companies

Investors from around the world again identified the most-promising energy tech startups at the Rice Alliance for Technology and Entrepreneurship's annual event.

"The recognition that Houston is the epicenter of energy transition is growing. It's something we are championing as much as possible so that the world can know exactly what we're doing," Paul Cherukuri, chief innovation officer at Rice University says at the 21st annual Energy Tech Venture Forum.

The event took place during the inaugural Houston Energy and Climate Startup Week, and nearly 100 startups from 23 states and seven countries pitched investors Wednesday, September 11, and Thursday, September 12. At the conclusion of the event, the investors decided on 10 companies deemed "most promising" from the presentations.

This year's selected companies are:

  • Revterra, a Houston-based company innovating within kinetic battery technology to enable faster and cleaner electric vehicle charging.
  • From Austin, 360 Mining is a modular data center provider for the oil and gas producers.
  • New York company Andium is a centralized and optimized operations platform for large energy companies.
  • Elementium Materials, a local Katy-based company, created its battery technology that originated out of MIT.
  • Splight is a San Mateo, California-based technology platform that provides real-time operational data based on inverter-based resources assets.
  • Los Angeles-based Mitico, one of the Rice Alliance Clean Energy Accelerator's class 4 participants, provides services and equipment for carbon capture through its granulated metal carbonate sorption technology.
  • From Cambridge, Massachusetts, Osmoses is changing the way molecular gas separations are performed within the chemical, petrochemical, and energy industries.
  • Rice Alliance Clean Energy Accelerator class 4 participant CORROLYTICS, based in Houston, has a corrosion detection and monitoring technology. The company also won over the crowd and secured the People's Choice win too.
  • Ardent, based in New Castle, Delaware, has developed a membrane technology for point-source carbon capture.
  • New Haven, Connecticut-based Oxylus Energy produces an alternative fuel from converting CO2 into green methanol.

Last year, investors named its selection of most-promising companies at Rice.

"We have a responsibility as a city to lead energy transition," Cherukuri continues. "A lot of the investments we're making at Rice are going to change the world."

Scientists use Houston rainwater to explore origins of life on Earth

let it rain

A flask of Houston’s rain helped answer a long-running question about the origin of cellular life.

The solution is proposed by two University of Houston scientists, William A. Brookshire Department of Chemical Engineering (UH ChBE) former grad student Aman Agrawal (now a postdoctoral researcher at University of Chicago’s Pritzker School of Molecular Engineering) and Alamgir Karim, UH Dow Chair and Welch Foundation Professor of chemical and biomolecular engineering, and director of both the International Polymer & Soft Matter Center and the Materials Engineering Program at UH. They were joined by UChicago PME Dean Emeritus Matthew Tirrell and Nobel Prize-winning biologist Jack Szostak in an article published last week in Scientific Advances.

For two decades, scientists like Szostak have hypothesized that RNA fragments were the first components of life to form in the Earth’s primordial seas 3.8 million years ago. Although DNA is an essential component of cellular life, it can’t fold proteins, making it unlikely to be the initial starting point. Since RNA can fold proteins, it could have been the catalyst for cellular growth and evolution.

The problem is that seawater molecules allow RNA to bond and change too quickly, often within minutes. Rapid dissipation means no segregation of material, and thus no evolution. Szostak himself proved in 2014 that regular seawater doesn’t allow RNA fragments to form the membranes necessary for cellular life.

Then along comes Agrawal. He wasn’t looking into the origin of life. He was an engineer studying the properties of complex liquids for his doctorate. Karim was his thesis adviser and introduced Agrawal to Tirrell, who brought up the RNA problem over a lunch and some theories about how if the water was distilled it may have solved it. Where would you get distilled water 3.8 billion years ago?

“I spontaneously said ‘rainwater,’” says Karim. “His eyes lit up and he was very excited at the suggestion. So, you can say it was a spontaneous combustion of ideas or ideation.”

Using RNA samples from Szostak, they saw that distilled water increased the differences in exchange rate between samples from minutes to days, long enough for the RNA to begin mutation.

Distilled lab water is nothing like prehistoric rain, though. Luckily, a typical Houston downpour occurred during the research. Agrawal and fellow UH graduate student, Anusha Vonteddu ran outside with beakers to collect some. The samples again formed meshy walls, separating the RNA and possibly showing how life began from these fragments billions of years ago.

“The molecules we used to build these protocells are just models until more suitable molecules can be found as substitutes,” Agrawal said. “While the chemistry would be a little bit different, the physics will remain the same.”

------

This article originally ran on CultureMap.