Recent funding from CPRIT will help launch the new Accelerator for Cancer Medical Devices. Photo via TMC

A new business accelerator at Houston’s Texas Medical Center has received a nearly $3 million grant from the Cancer Prevention and Research Institute of Texas.

The CPRIT grant, awarded to the Texas Medical Center Foundation, will help launch the Accelerator for Cancer Medical Devices. The accelerator will support emerging innovators in developing prototypes for cancer-related medical devices and advancing them from prototype to clinical trials.

“The translation of new cancer-focused precision medical devices, often the width of a human hair, creates the opportunity to develop novel treatments for cancer patients,” the accelerator posted on the CPRIT website.

Scientist, consultant, and entrepreneur Jason Sakamoto, associate director of the TMC Center for Device Innovation, will oversee the accelerator. TMC officials say the accelerator builds on the success of TMC Innovation’s Accelerator for Cancer Therapeutics.

Each participant in the Accelerator for Cancer Medical Devices program will graduate with a device prototype, a business plan, and a “solid foundation” in preclinical and clinical strategies, TMC says. Participants will benefit from “robust support” provided by the TMC ecosystem, according to the medical center, and “will foster innovation into impactful and life-changing cancer patient solutions in Texas and beyond.”

In all, CPRIT recently awarded $27 million in grants for cancer research. That includes $18 million to attract top cancer researchers to Texas. Houston institutions received $4 million for recruitment:

  • $2 million to the University of Texas MD Anderson Cancer Center to recruit Rodrigo Romero from Memorial Sloan Kettering Cancer Center in New York City
  • $2 million to MD Anderson to recruit Eric Gardner from Weill Cornell Medicine in New York City

A $1 million grant also went to Baylor College of Medicine researcher Dr. Akiva Diamond. He is an assistant professor at the medical college and is affiliated with Baylor’s Dan L. Duncan Comprehensive Cancer Center.

MD Anderson is teaming up with TOPPAN Holdings on cutting-edge organoid tech to help match cancer patients with the most effective treatments. Photo via Getty Images.

MD Anderson launches $10M collaboration to advance personalized cancer treatment tech

fighting cancer

The University of Texas MD Anderson Cancer Center and Japan’s TOPPAN Holdings Inc. have announced a strategic collaboration to co-develop TOPPAN Holdings’ 3D cell culture, or organoid, technology known as invivoid.

The technology will be used as a tool for personalized cancer treatments and drug screening efforts, according to a release from MD Anderson. TOPPAN has committed $10 million over five years to advance the joint research activities.

“The strategic alliance with MD Anderson paves a promising path toward personalized cancer medicine," Hiroshi Asada, head of the Business Innovation Center at TOPPAN Holdings, said in a news release.

Invivoid is capable of establishing organoid models directly from patient biopsies or other tissues in a way that is faster and more efficient. Researchers may be able to test a variety of potential treatments in the laboratory to understand which approach may work best for the patient, if validated clinically.

“Organoids allow us to model the three-dimensional complexity of human cancers in the lab, thus allowing us to engineer a powerful translational engine—one that could not only predict how patients will respond to therapy before treatment begins but also could help to reimagine how we discover and validate next-generation therapies," Dr. Donna Hansel, division head of pathology and laboratory medicine at MD Anderson, added in the news release. “Through this collaboration, we hope to make meaningful progress in modeling cancer biology for therapeutic innovation.”

The collaboration will build upon preclinical research previously conducted by MD Anderson and TOPPAN. The organizations will work collaboratively to obtain College of American Pathologists (CAP) and Clinical Laboratory Improvement Amendments (CLIA) certifications for the technology, which demonstrate a commitment to high-quality patient care. Once the certifications are obtained, they plan to conduct observational clinical studies and then prospective clinical studies.

“We believe our proprietary invivoid 3D cell culture technology, by enabling the rapid establishment of organoid models directly from patient biopsies, has strong potential to help identify more effective treatment options and reduce the likelihood of unnecessary therapies,” Asada added in the release. “Through collaboration on CAP/CLIA certification and clinical validation, we aim to bring this innovation closer to real-world patient care and contribute meaningfully to the advancement of cancer medicine."

A new cancer-fighting drug will move to clinical trials after being tested on Axiom's Ax-2 and Ax-3 missions. Photo courtesy Axiom Space.

Axiom Space-tested cancer drug advances to clinical trials

mission critical

A cancer-fighting drug tested aboard several Axiom Space missions is moving forward to clinical trials.

Rebecsinib, which targets a cancer cloning and immune evasion gene, ADAR1, has received FDA approval to enter clinical trials under active Investigational New Drug (IND) status, according to a news release. The drug was tested aboard Axiom Mission 2 (Ax-2) and Axiom Mission 3 (Ax-3). It was developed by Aspera Biomedicine, led by Dr. Catriona Jamieson, director of the UC San Diego Sanford Stem Cell Institute (SSCI).

The San Diego-based Aspera team and Houston-based Axiom partnered to allow Rebecsinib to be tested in microgravity. Tumors have been shown to grow more rapidly in microgravity and even mimic how aggressive cancers can develop in patients.

“In terms of tumor growth, we see a doubling in growth of these little mini-tumors in just 10 days,” Jamieson explained in the release.

Rebecsinib took part in the patient-derived tumor organoid testing aboard the International Space Station. Similar testing is planned to continue on Axiom Station, the company's commercial space station that's currently under development.

Additionally, the drug will be tested aboard Ax-4 under its active IND status, which was targeted to launch June 25.

“We anticipate that this monumental mission will inform the expanded development of the first ADAR1 inhibitory cancer stem cell targeting drug for a broad array of cancers," Jamieson added.

According to Axiom, the milestone represents the potential for commercial space collaborations.

“We’re proud to work with Aspera Biomedicines and the UC San Diego Sanford Stem Cell Institute, as together we have achieved a historic milestone, and we’re even more excited for what’s to come,” Tejpaul Bhatia, the new CEO of Axiom Space, said in the release. “This is how we crack the code of the space economy – uniting public and private partners to turn microgravity into a launchpad for breakthroughs.”

Coya Therapeutics appoints a new CEO to lead its innovative Alzheimer's treatment development efforts. Photo via LinkedIn

New CEO brings strategic vision to Houston co. advancing neurodegenerative disease treatments

Q&A

Coya Therapeutics has named a new CEO. As of Nov. 1, Arun Swaminathan replaced Co-founder Howard Berman in the role. Berman has assumed the title of executive chairman, in which he will still remain active with the company.

Swaminathan started with Coya two years ago as chief business officer. This transition was planned, says the PhD-holding scientist and businessman.

“(Berman's) intent was that it was the right time to put in place a CEO that, as we move into the operational phases of the company, that can take the reins from him,” he tells InnovationMap.

Coya Therapeutics is a publicly traded biotechnology company that is working on two novel treatments for Alzheimer's disease. Coya's therapeutics, which are currently in trials, use regulatory T cells (T regs) to target both systemic- and neuroinflammation in patients.

InnovationMap: Berman has been a very visible CEO. Will you follow suit?

Arun Swaminathan: I think it's part of the CEO’s job to be visible and to communicate the value of our company to all the stakeholders out there. So yes, I do plan to be visible as well. Obviously, Howard as the founder had elements that he talked about, the foundational stories. I obviously will be doing less of that.

IM: What was your journey from the lab to the boardroom?

AS: I have a PhD from the University of Pittsburgh. I like to say that I grew up at Bristol Myers Squibb, so I started in a clinical pharmacology group at BMS, running clinical trials, but in the cardiovascular and metabolic space.

What happened was, as I was the study director on a diabetes trial there, and the data starts coming in for these early diabetic trials, and I got highly involved with the commercial folks at BMS in starting to plan out “What does the target profile look like? How is this going to play out in the real world?” You know, the marketing teams and commercial teams start engaging when clinical data is available, because they're starting to plan for the eventual launch of the product.

That gave me a lot of exposure to the commercial side of things, and I also got a lot of experience presenting to opinion leaders and others through that role. And I said, “What I really love is that intersection between science and business.” And so I think that was my moment.

Then I moved to business development and licensing, where I helped scan the universe for assets and talk to CEOs of companies like Coya as a junior person, trying to understand if there's something that we can bring into BMS to strengthen the pipeline of BMS. So that gave me exposure to deals, how deals are structured, how you negotiate a lot of that kind of stuff.

Then I said, “Look, if I want to be a complete person in biotech, I do need to go into more true commercial roles.” So I went into commercial strategy. I was involved in the commercial strategy for what is now known as Eliquis. Was back then known as apixaban. That’s still the generic name.

Then I led marketing for Orencia, a rheumatoid arthritis drug. So I went and got both strategic and tactical marketing experience at BMS, and then I used all of that experience, rounded up. I eventually ended up co-founding a company, and that's led me to the last nine years with smaller biotech companies. So that's my evolution and path. But I think my true moment of realization was about three years into my clinical role at BMS, when I said, what I really enjoy is translating good science into commercial value, and I think that's what excites me.

IM: Why is Houston an important part of Coya's success?

AS: It is important that Coya stays in Houston, because we have a very close association with Houston Methodist, we get a lot of our work, our early research work still done through Houston Methodist, through Dr. [Stanley] Appel's lab and through other experts. We absolutely have a special research agreement with Houston Methodist, so we have a very strong reason to be in Houston. So, we do not anticipate moving out of Houston.

------

This conversation has been edited for brevity and clarity.

Energy Transfer, a Dallas-based midstream energy company, just donated $100,000 to Houston Methodist. Photo via TMC.edu

Energy co. makes $100,000 donation to Houston hospital

curing ALS

Where do energy transition and life-saving medicine meet? In Texas, of course.

Energy Transfer, a Dallas-based midstream energy company, just donated $100,000 to Houston Methodist. The grant is part of a $200,000 gift that has spanned the past two years. The goal? To eradicate the neurological disorder, ALS (amyotrophic lateral sclerosis). There is currently no cure for ALS. For roughly 90 percent of patients, there’s no known genetic cause, meaning the disease can strike anyone.

Houston Methodist currently has numerous clinical trials taking place with the goal to slow or halt the progression of the degenerative ailment.

“Every dollar donated to ALS research is a beacon of hope for those battling the disease,” said Chris Curia, executive vice president and chief human resources officer at Energy Transfer. “Those affected by ALS deserve a chance at a better life. We are hopeful this donation brings us one step closer to a world without this disease.”

Houston Methodist is home to the first multidisciplinary care clinic for ALS patients in the region and is actively engaged in both clinical and basic scientific research to support people battling ALS.

“We appreciate Energy Transfer’s generosity in our efforts to improve the quality of life and to provide hope for ALS patients and their families. Their continued commitment to Houston Methodist’s ongoing ALS research is truly transformational,” says Stanley H. Appel, M.D., a pioneering neurologist at Houston Methodist whose lab focuses on neurodegenerative diseases, including ALS.

Energy Transfer’s gift will help to support one particularly promising trial of a combination therapy that is currently moving into Phase 2. In its first phase, the therapy was found to safely slow disease progression in four ALS patients over a six-month period. Those patients had no significant progression of their disease during the trial. Prior to receiving the therapy, each of the patients had reported declining abilities to perform daily tasks.

Energy Transfer’s good deed could mean the world not only to patients at Houston Methodist, but to ending ALS altogether.

------

This article originally ran on EnergyCapital.

The new center is specifically designed to allow patients to be on the cutting edge of testing brand-new therapies that could save their lives.

Houston cancer-fighting organization launches center to support early clinical trials

new to hou

Cancer treatment in Houston just became even more promising — and forward-thinking.

Phase 1 clinical trials are necessary to prove the efficacy in humans of treatments that have appeared promising in lab trials. In the name of cancer-fighting innovation, Baylor College of Medicine’s Dan L. Duncan Comprehensive Cancer Center has launched the Albert and Margaret Alkek Foundation Center for Experimental Therapeutics.

The new center is specifically designed to allow patients to be on the cutting edge of testing brand-new therapies that could save their lives.

“Clinical trials are critical for advancing the field of oncology and improving outcomes for cancer patients. Phase 1 trials are the first step in bringing innovative therapies to the clinic,” says Dr. Benjamin Musher, Barry S. Smith endowed professor at Baylor and medical director of medical oncology at the Duncan Cancer Center McNair Campus, in a news release. “Our new program will build on the success of previous phase 1 trials at Baylor and provide robust infrastructure to offer more clinical trial opportunities to our patients.”

The Alkek Foundation Center’s team practices across all specialty areas, allowing a broad swath of the Cancer Center’s patients to take part and to continue to receive care from the sub-specialty doctors they know and trust. And even if they aren’t already being treated at Baylor, physicians from outside Baylor can refer patients to the program through a smooth process.

“We are excited to offer novel research treatment options to our cancer patients at our state-of-the-art unit,” says Dr. Pavan Reddy, director of the Dan L Duncan Comprehensive Cancer Center and senior associate dean of cancer programs at Baylor. “This program will increase the scope of our research while giving the cancer patients in our community access to first in human and cutting-edge clinical trials.”

Patients will be treated at Duncan Cancer Center’s clinical home, Baylor St. Luke’s Medical Center’s O’Quinn Medical Tower at the McNair Campus. As interim dean of research and dean of the Graduate School of Biomedical Sciences at Baylor, Carolyn Smith says, with the new center, Baylor is “advancing medicine by taking innovations made in the lab and moving them to the bedside.”

The debut trial to take place at the center enrolled its first patient this month. It will test a novel therapy that targets a mutation commonly found in pancreatic and colorectal cancers.

“Phase 1 oncology clinical trials provide patients early access to cutting-edge therapeutics and immunotherapies that are not widely available. Patients in these trials are often selected because their tumors have a molecular feature that is targeted by these therapies,” says Dr. S. Gail Eckhardt, who is Baylor’s Albert and Margaret Alkek endowed chair and serves as associate dean for experimental therapeutics at Baylor and associate director of translational research at the Duncan Cancer Center.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston team develops low-cost device to treat infants with life-threatening birth defect

infant innovation

A team of engineers and pediatric surgeons led by Rice University’s Rice360 Institute for Global Health Technologies has developed a cost-effective treatment for infants born with gastroschisis, a congenital condition in which intestines and other organs are developed outside of the body.

The condition can be life-threatening in economically disadvantaged regions without access to equipment.

The Rice-developed device, known as SimpleSilo, is “simple, low-cost and locally manufacturable,” according to the university. It consists of a saline bag, oxygen tubing and a commercially available heat sealer, while mimicking the function of commercial silo bags, which are used in high-income countries to protect exposed organs and gently return them into the abdominal cavity gradually.

Generally, a single-use bag can cost between $200 and $300. The alternatives that exist lack structure and require surgical sewing. This is where the SimpleSilo comes in.

“We focused on keeping the design as simple and functional as possible, while still being affordable,” Vanshika Jhonsa said in a news release. “Our hope is that health care providers around the world can adapt the SimpleSilo to their local supplies and specific needs.”

The study was published in the Journal of Pediatric Surgery, and Jhonsa, its first author, also won the 2023 American Pediatric Surgical Association Innovation Award for the project. She is a recent Rice alumna and is currently a medical student at UTHealth Houston.

Bindi Naik-Mathuria, a pediatric surgeon at UTMB Health, served as the corresponding author of the study. Rice undergraduates Shreya Jindal and Shriya Shah, along with Mary Seifu Tirfie, a current Rice360 Global Health Fellow, also worked on the project.

In laboratory tests, the device demonstrated a fluid leakage rate of just 0.02 milliliters per hour, which is comparable to commercial silo bags, and it withstood repeated disinfection while maintaining its structure. In a simulated in vitro test using cow intestines and a mock abdominal wall, SimpleSilo achieved a 50 percent reduction of the intestines into the simulated cavity over three days, also matching the performance of commercial silo bags. The team plans to conduct a formal clinical trial in East Africa.

“Gastroschisis has one of the biggest survival gaps from high-resource settings to low-resource settings, but it doesn’t have to be this way,” Meaghan Bond, lecturer and senior design engineer at Rice360, added in the news release. “We believe the SimpleSilo can help close the survival gap by making treatment accessible and affordable, even in resource-limited settings.”

Oxy's $1.3B Texas carbon capture facility on track to​ launch this year

gearing up

Houston-based Occidental Petroleum is gearing up to start removing CO2 from the atmosphere at its $1.3 billion direct air capture (DAC) project in the Midland-Odessa area.

Vicki Hollub, president and CEO of Occidental, said during the company’s recent second-quarter earnings call that the Stratos project — being developed by carbon capture and sequestration subsidiary 1PointFive — is on track to begin capturing CO2 later this year.

“We are immensely proud of the achievements to date and the exceptional record of safety performance as we advance towards commercial startup,” Hollub said of Stratos.

Carbon dioxide captured by Stratos will be stored underground or be used for enhanced oil recovery.

Oxy says Stratos is the world’s largest DAC facility. It’s designed to pull 500,000 metric tons of carbon dioxide from the air and either store it underground or use it for enhanced oil recovery. Enhanced oil recovery extracts oil from unproductive reservoirs.

Most of the carbon credits that’ll be generated by Stratos through 2030 have already been sold to organizations such as Airbus, AT&T, All Nippon Airways, Amazon, the Houston Astros, the Houston Texans, JPMorgan, Microsoft, Palo Alto Networks and TD Bank.

The infrastructure business of investment manager BlackRock has pumped $550 million into Stratos through a joint venture with 1PointFive.

As it gears up to kick off operations at Stratos, Occidental is also in talks with XRG, the energy investment arm of the United Arab Emirates-owned Abu Dhabi National Oil Co., to form a joint venture for the development of a DAC facility in South Texas. Occidental has been awarded up to $650 million from the U.S. Department of Energy to build the South Texas DAC hub.

The South Texas project, to be located on the storied King Ranch, will be close to industrial facilities and energy infrastructure along the Gulf Coast. Initially, the roughly 165-square-mile site is expected to capture 500,000 metric tons of carbon dioxide per year, with the potential to store up to 3 billion metric tons of CO2 per year.

“We believe that carbon capture and DAC, in particular, will be instrumental in shaping the future energy landscape,” Hollub said.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.