At Rezvani Lab in MD Anderson Cancer Center, scientists train immune cells to fight cancer. Photo via Getty Images

Replay, a genome-writing company headquartered in San Diego, has announced that its first patient has been dosed with an engineered T-Cell Receptor Natural Killer (TCR-NK) cell therapy for relapsed or refractory multiple myeloma.

What does that have to do with Houston? Last year, Replay incorporated a first-in-class engineered TCR-NK cell therapy product company, Syena, using technology developed by Dr. Katy Rezvani at The University of Texas MD Anderson Cancer Center.

Rezvani, a professor of stem cell transplantation and cellular therapy, is the force behind MD Anderson’s Rezvani Lab, a group of 55 people, all focused on harnessing natural killer cells to combat cancer.

“Everybody thinks that the immune system is fighting viruses and infections, but I feel our immune system is capable of recognizing and killing abnormal cells or cells that are becoming cancerous and they're very powerful. This whole field of immunotherapy really refers to the power of the immune system,” Rezvani tells InnovationMap.

Dr. Katy Rezvani is a professor of stem cell transplantation and cellular therapy and the force behind MD Anderson’s Rezvani Lab, which is focused on harnessing natural killer cells to combat cancer. Photo via mdanderson.org

At Rezvani Lab, scientists train immune cells to fight cancer. While cancer drugs like chemotherapy are still the norm, immunotherapy has gained ground, led by Houston research, including the work of Nobel laureate Jim Allison. The harnessed cells are taught to attack cancerous cells, while ignoring healthy ones, says Rezvani. “We’re turning them into heat-seeking missiles,” she explains.

However, there must be a beacon to signal to those “missiles” that there is something to attack. Much of the field has used chimeric antigen receptors (CARs) to achieve that. But they have limitations.

“CARs can only recognize beacons that sit on the surface of the tumor cells,” Rezvani says. “So basically, it's like the tumor cell has to have a hat on it.”

She says that this usually means that the targets that send off a signal are relatively limited, mostly blood cancers. Using T cell receptors (TCRs) may be able to open up the field to look beyond the “hat.” In other words, TCRs can peer inside cells and see what differentiates a tumor cell from healthy cells. With Replay, Rezvani Lab has developed a first-in-class and first-in-human approach of engineering natural killer cells to express the TCR.

There are six different FDA-approved products that use CAR-T cells, but Rezvani says that her TCR-NK-based technology, though still in its early phases, shows great promise.

“We could use it to target many different types of antigens, many different types of cancers, especially solid tumors," she explains. "These cell therapies have a lot of potential — we call them living drugs… It's not like chemotherapy where you have to keep giving different multiple cycles, these cells are very long lived.”

Rezvani, who started her career in London, says that Houston has been instrumental in the success of her lab.

“There are so many opportunities because we have access to some of the most brilliant minds in research,” Rezvani says. “We have some of the best clinicians in the world. We have patients who come to us who are willing to participate in our clinical trials — really put their trust in us — and are committed and want to participate in these clinical studies.”

The role of funding also plays a part. As Rezvani admitted, bringing a new technology to the market is expensive. The philanthropists who help support trials can’t be forgotten among Houston’s finest.

Whether or not Syena produces the first TCR-NK product on the market, Rezvani is enthusiastic and hopeful for the future of her patients.

“The field of immunotherapy is really expanding, the field of cell therapies is expanding, and there is so much promise,” she says. “The promise of AI, big data, all the engineering tools that we have available, the promise of CRISPR — all of that is going to bring what we've learned from biology, from basic science, together to help us make the cell therapies that are going to be safe and and also very effective for our patients.”

VenoStent's innovative medical device is officially enrolling subjects in a clinical trial. Image courtesy of VenoStent

Houston startup with unique vascular innovation enrolls subjects in new trial

medical device momentum

A Houston-based company has enrolled the initial subjects in a first-of-its-kind trial.

VenoStent was created to improve vascular surgery outcomes for patients undergoing arteriovenous fistula (AVF) creation surgery.

“When a vein is connected to an artery, as in AVF creation, the vein experiences a 10x increase in pressure and flow that is traumatizing to veins. Many fail to become usable for dialysis,” Geoffrey Lucks, VenoStent COO and co-founder, says in a news release.

Enter VenoStent’s SelfWrap Bioabsorbable Perivascular Wrap, better known as simply SelfWrap. In May 2023, SelfWrap gained FDA approval to begin its US IDE Study, SAVE-FistulaS: The SelfWrap-Assisted ArterioVEnous Fistula Study.

Roughly half a million Americans need hemodialysis just to survive another day. Nearly all of those patients require a vascular access creation surgery, but the procedure has a 50-percent failure rate in its first year. VenoStent and SelfWrap are aimed at improving those odds. It works by using the body’s own healing mechanism.

SelfWrap is a flexible, bioabsorbable vascular wrap that helps to recreate the arterial environment in veins. Over time, the body replaces the SelfWrap with venous tissue.

The company has begun to enroll patients for what will eventually be a 200-subject study. Some of those people have radiocephalic fistulas, others have brachiocephalic ones. This is important, because it will likely prove that the technology works for most types of AVFs. The sites for this clinical trial are at the Surgical Specialists of Charlotte, P.A. in Charlotte, NC, and the Cardiothoracic and Vascular Surgeons in Austin.

“While it’s ambitious and sets a high bar for FDA Approval, we owe it to the chronic kidney disease (CKD) patient community to provide the highest level of clinical evidence,” Timothy Boire, CEO and cofounder, says in the release. “We’re confident based on years of preclinical and clinical data that we’ll demonstrate superiority to standard of care with this breakthrough technology.”

VenoStent recently completed a $16 million Series A, financed by Good Growth Capital and IAG Capital. This is the first-ever randomized controlled trial of a medical device designed to improve outcomes from arteriovenous fistula (AVF) creation surgery in the United States.

A Houston-based biotech company has completed early testing for its groundbreaking insulin alternative and is headed toward clinical trials. Photo via Getty Images

Houston startup completes testing, prepares biosimilar insulin drug for clinical trials

next steps

A Houston biotech startup is one step closer to releasing its marquee drug for the global insulin market, which is projected to break the $90 billion threshold by 2029.

rBIO says it recently completed testing of the properties of R-biolin, an insulin drug that’s biologically identical to Novo Nordisk’s Novolin drug. The patent for Novolin about two decades ago. In March 2023, the Dutch drugmaker announced it was slashing the list price of Novolin by 65 percent to $48.20 per vial and $91.09 per FlexPen.

Executives at rBIO are now pursuing a partnership with a contract research organization to manage clinical trials of R-biolin. If those trials go well, R-biolin will seek approval to supply its insulin therapy to diabetes patients around the world.

Washington University in St. Louis is rBIO’s academic partner for the R-biolin project.

The rBIO platform produces insulin at greater yields that traditional manufacturing techniques do. The company is striving to drive down the cost of insulin by 30 percent.

About 38 million Americans have diabetes, with the vast majority being treated for type 2 diabetes, according to the U.S. Centers for Disease Control and Prevention (CDC). Many people with diabetes must take insulin to control their blood sugar levels.

Research company iHealthcareAnalyst predicts the global market for insulin will surpass the $90 billion mark in 2029.

“There has been a lot of talk in the media about reducing the cost of insulin for diabetic patients, but what is often overlooked is that the domestic demand for insulin will soon outpace the supply, leading to a new host of issues,” Cameron Owen, co-founder and CEO of rBIO, says in a news release.

“We’re dedicated to addressing the growing demand for accessible insulin therapies, and … we’re thrilled to announce the viability of our highly scalable manufacturing process.”

Professionals from the University of California San Diego and Johns Hopkins University established rBIO in 2020. The startup moved its headquarters from San Diego to Houston in 2022.

CEO Cameron Owen and Chief Scientific Officer Deenadayalan Bakthavatsalam work on insulin purification in the Houston lab. Photo courtesy

Sieve Health is an AI cloud-based SaaS platform designed to automate and accelerate matching patients with clinical trials. Photo via Getty Images

Houston-based health tech startup is revolutionizing patient selection for clinical trials

working smarter

On many occasions in her early career, Dr. Arti Bhosale, co-founder and CEO of Sieve Health, found herself frustrated with having to manually sift through thousands of digital files.

The documents, each containing the medical records of a patient seeking advanced treatment through a clinical trial, were always there to review — and there were always more to read.

Despite the tediousness of prescreening, which could take years, the idea of missing a patient and not giving them the opportunity to go through a potentially life-altering trial is what kept her going. The one she didn’t read could have slipped through the cracks and potentially not given someone care they needed.

“Those stories have stayed with me,” she says. “That’s why we developed Sieve.”

When standard health care is not an option, advances in medical treatment could be offered through clinical trials. But matching patients to those trials is one of the longest standing problems in the health care industry. Now with the use of new technology as of 2018, the solution to the bottleneck may be a new automated approach.

“Across the globe, more than 30 percent of clinical trials shut down as a result of not enrolling enough patients,” says Bhosale. “The remaining 80 percent never end up reaching their target enrollment and are shut down by the FDA.”

In 2020, Bhosale and her team developed Sieve Health, an AI cloud-based SaaS platform designed to automate and accelerate matching patients with clinical trials and increase access to clinical trials.

Sieve’s main goal is to reduce the administrative burden involved in matching enrollments, which in turn will accelerate the trial execution. They provide the matching for physicians, study sponsors and research sites to enhance operations for faster enrollment of the trials.

The technology mimics but automates the traditional enrollment process — reading medical notes and reviewing in the same way a human would.

“I would have loved to use something like this when I was on the front lines,” Bhosale says, who worked in clinical research for over 12 years. “Can you imagine going through 10,000 records manually? Some of the bigger hospitals have upwards of 100,000 records and you still have to manually review those charts to make sure that the patient is eligible for the trial. That process is called prescreening. It is painful.”

Because physicians wear many hats and have many clinical efforts on their plates, research tends to fall to the bottom of the to-do list. Finding 10-20 patients can take the research team on average 15-20 months to find those people — five of which end up unenrolling, she says.

“We have designed the platform so that the magic can happen in the background, and it allows the physician and research team to get a jumpstart,” she says.” They don’t have to worry about reviewing 10,000 records — they know what their efforts are going to be and will ensure that the entire database has been scanned.”

With Sieve, the team was able to help some commercial pilot programs have a curated data pool for their trials – cutting the administrative burden and time spent searching to less than a week.

Sieve is in early-stage start up mode and the commercial platform has been rolled out. Currently, the team is conducting commercial projects with different research sites and hospitals.

“Our focus now is seeing how many providers we can connect into this,” she says. “There’s a bigger pool out there who want to participate in research but don’t know where to start. That’s where Sieve is stepping in and enabling them to do this — partnering with those and other groups in the ecosystem to bring trials to wherever the physicians and the patients are.”

Arti Bhosale is the co-founder and CEO of Sieve Health. Photo courtesy of Sieve

Houston-based Pulmotect announced a grant from the U.S. Department of Defense that will fund two COVID-19 drug trials. Photo via Getty Images

Houston biotech receives up to $6M federal grant for COVID-19 treatment

DOD delivered

The Pentagon is putting its financial power behind two COVID-19 clinical trials led by Houston-based biotech company Pulmotect Inc.

The U.S. Department of Defense is pumping as much as $6 million into the pair of Phase 2 trials, which involve a total of 300 U.S. participants, according to a January 27 news release from Pulmotect. When it's inhaled, Pulmotect's drug, PUL-042, stimulates the lungs' immune system to fight bacteria, viruses, or fungi that cause respiratory illnesses.

Pulmotect joins a number of Houston organizations that have tapped into Department of Defense funding for research into COVID-19 therapies.

In January, for instance, researchers at the University of Texas Health Science Center at Houston (UTHealth) collected $5.1 million from the department to evaluate whether an investigational oral drug, vadadustat, can help prevent acute respiratory distress syndrome (ARDS) in COVID-19 patients.

"It's wonderful that we have COVID-19 vaccinations available now, but they won't directly help patients who are already sick in the hospital or who will become sick in the future," Dr. Holger Eltzschig, chairman of Department of Anesthesiology at UTHealth's McGovern Medical School, says in a news release.

Also in January, Houston-based clinical research organization Pharm-Olam LLC sealed a $36.3 million deal with the Department of Defense to conduct a clinical trial of an antibody treatment for inflammatory problems associated with COVID-19.

So far, Pulmotect's PUL-042 has shown promise in battling the coronaviruses that trigger MERS (Middle East respiratory syndrome) and SARS (severe acute respiratory syndrome). The current trials related to the coronavirus that causes COVID-19 are evaluating PUL-042's effect on prevention of infections and reducing the severity of the disease.

Pulmotect initially designed PUL-042 to treat and prevent respiratory complications in cancer patients. But once the coronavirus pandemic set in, the company pivoted to testing the effectiveness of its drug in combatting the virus that causes COVID-19. Last May, the U.S. Food and Drug Administration (FDA) approved Pulmotect's COVID-19 trials.

Pulmotect says PUL-042 someday could be a therapy that's deployed during pandemics, epidemics, and bioterrorism attacks.

Invented at Houston's MD Anderson Cancer Center and at Texas A&M University, PUL-042 has earned patents in 10 countries. The National Institutes of Health, the Cancer Prevention and Research Institute of Texas, and other organizations have supported R&D for PUL-042.

Founded in 2007, Pulmotect emerged from Houston's Fannin Innovation Studio, which nurtures early stage companies in the life sciences sector. In September 2019, the company brought aboard Dr. Colin Broom as CEO. He previously was CEO of an Irish biopharmaceutical company.

Thus far, Pulmotect has garnered about $18 million in equity and about $20 million in other funding.

Before the pandemic, Pulmotect was evaluating the effectiveness of PUL-042 in treating patients with mild chronic obstructive pulmonary disease (COPD) who've been exposed to a respiratory virus.

COPD, which affects 30 million Americans, is the No. 3 cause of death in the U.S., according to the COPD Foundation. Pulmotect says 40 percent of COPD-related costs could be avoided by heading off complications and hospitalizations, which usually result from COPD problems caused by a bacterial or viral infection. In this context, the drug is meant to treat cancer patients undergoing chemotherapy whose weakened immune systems make them susceptible to pneumonia.

Pulmotect is headed to clinical trials to verify how its drug fights against COVID-19. Getty Images

Houston biotech company gets green light from FDA to test coronavirus-fighting drug

clinical trials bound

Houston biotech company Pulmotect Inc. has embarked on two clinical drug trials that could create weapons for the battle against the novel coronavirus.

Pulmotect gained permission from the U.S. Food and Drug Administration to test its inhaled drug, PUL-042, as a way to prevent coronavirus infections and to slow the early progression of COVID-19, the potentially fatal disease caused by the novel coronavirus. Pulmotect developed PUL-042 to activate the lungs' front-line defense against respiratory infections, and now it's being enlisted in the race to devise coronavirus treatments and cures.

"We have demonstrated PUL-042's unique ability to stimulate the immune system in the lungs to protect against a wide range of pathogens in multiple animal models," Dr. Colin Broom, CEO of Pulmotect, says in a May 7 release. "Pulmotect is optimistic that its immune-stimulating technology could be useful in mitigating the threats of [the coronavirus] and future emerging pathogens, and protecting vulnerable populations."

Unlike a vaccine, which typically takes 10 to 15 years to bring to the market, PUL-042 promises much faster deployment as scientists and health care workers wage war against COVID-19.

Each of the two clinical trials, both in the second phase, is being conducted at 10 sites across the U.S., including locations in Houston. In all, 20 sites are participating. Money for the trials came from the company's recently completed $12 million round of series B funding.

Pulmotect's partner in the trials is Covington, Kentucky-based CTI Clinical Trial and Consulting Services Inc. PARI Respiratory Equipment Inc., whose North American headquarters is in Midlothian, Virginia, is supplying medical equipment known as nebulizers to administer Pulmotect's inhaled drug.

"Both clinical trials are placebo-controlled to objectively evaluate safety and efficacy," Broom says in a May 5 release.

"In the first study, up to four doses of PUL-042 or placebo will be administered to 200 subjects by inhalation over a 10-day period to evaluate the prevention of infection and reduction in severity of COVID-19. In the second study, 100 patients with early symptoms of COVID-19 will receive the treatment administered up to three times over six days. In both trials, subjects will be followed up for 28 days to assess the effectiveness and tolerability of PUL-042."

Previous experiments conducted by Pulmotect indicate PUL-042 effectively protects mice against severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS), which are caused by coronaviruses that differ from the COVID-19 virus. Researchers performed those tests at the University of Texas Medical Branch at Galveston.

PUL-042 initially was developed to fight respiratory problems in cancer patients undergoing chemotherapy, which weakens the immune system. But the drug offers the potential to prevent or treat an array of respiratory infections caused by viruses, bacteria, or fungi.

"We have always considered PUL-042 to have the potential for the prevention and treatment of emerging epidemics and pandemics like the one we currently face," Broom says.

A separate trial of PUL-042 is underway in London. There, the drug is being tested on patients with chronic obstructive pulmonary disease (COPD) who are susceptible to lung infections. COPD is an inflammatory disease that blocks airflow from the lungs. People with COPD face a heightened risk of conditions like heart disease and lung cancer, the Mayo Clinic says.

Researchers at MD Anderson Cancer Center and Texas A&M University invented Pulmotect's PUL-042, which holds patents in 10 countries. Pulmotect, founded in 2007, emerged from Houston's Fannin Innovation Studio, which fosters early stage companies in the life sciences sector.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

3 Houston innovators to know this week

who's who

Editor's note: Every week, I introduce you to a handful of Houston innovators to know recently making headlines with news of innovative technology, investment activity, and more. This week's batch includes a podcast with the founder of a new venture firm, a former astronaut and recent award recipient, and a health care innovator with fresh funding.

Zach Ellis, founder and managing partner of South Loop Ventures

Zach Ellis explains on the Houston Innovators Podcast that South Loop Ventures plans to invest in promising companies from across the country and bring them into Houston's ecosystem to grow and scale. Photo via LinkedIn

Houston has a lot of the right ingredients for commercialization and scaling up companies, so when Zach Ellis moved to town to stand up a venture capital firm that made investments in diverse founders, he decided to go about it in an innovative way.

South Loop Ventures, which Ellis launched two years ago, invests in pre-seed and seed-stage startups across health care, climatetech, aerospace, sports, and fintech. While the first handful of investments, which have already been made, are into Houston-based companies, Ellis explains on the Houston Innovators Podcast that the firm plans to invest in promising companies from across the country and bring them into Houston's ecosystem to grow and scale.

"Any investor wants to feel like they are looking at the best possible investment opportunities in which to deploy capital," Ellis says on the show. "So that's reason No. 1 to cast your net as widely as possible.

"At the same time, you want to give any investment that you make greatest chances of success," he continues. "The biggest factor of success outside of the team and the capital you give them, is the customers that they can call upon. In bringing targeted companies to Houston or connecting them with Houston, you introduce the opportunity for them to achieve rapid scale and work with world-class partners very efficiently." Read more.


Toby R. Hamilton, founder and CEO of Hamilton Health Box

Dr. Toby Hamilton has secured $10 million to grow his company. Photo via tmc.edu

A Houston company that is working on a value-based model for primary care has fresh funding to support its mission.

Hamilton Health Box announced the completion of a $10 million series A funding round led by 1588 Ventures with participation from Memorial Hermann Health System, Impact Ventures by Johnson & Johnson Foundation, Texas Medical Center Venture Fund, and the Sullivan Brothers.

The company, founded in 2019 by Dr. Toby R. Hamilton, will use the funding to fuel its expansion into rural areas to help assist those living in Health Professional Shortage Areas, or HPSAs. Read more.

Ellen Ochoa, former astronaut and center director at the NASA's Johnson Space Center

Ellen Ochoa was recognized for her leadership at NASA Johnson and for being the first Hispanic woman in space. Photo via NASA

Two astronauts recently received Presidential Medals of Freedom from President Joe Biden for their leadership in space.

Ellen Ochoa, the former center director and astronaut at the NASA's Johnson Space Center in Houston, and Jane Rigby, senior project scientist for NASA’s James Webb Space Telescope, were honored at the White House on May 3.

Ochoa spent 30 years with NASA, which included being the 11th director of JSC, deputy center director of JSC, and director of Flight Crew Operations. She served on the nine-day STS-56 mission aboard the space shuttle Discovery in 1993, and became the first Hispanic woman in space. She flew four more times to space with STS-66, STS-96, STS-110, and more.

“I’m so grateful for all my amazing NASA colleagues who shared my career journey with me,” Ochoa says in a NASA news release. Read more.

Houston health care institutions receive $22M to attract top recruits

coming to Hou

Houston’s Baylor College of Medicine has received a total of $12 million in grants from the Cancer Prevention & Research Institute of Texas to attract two prominent researchers.

The two grants, which are $6 million each, are earmarked for recruitment of Thomas Milner and Radek Skoda. The Cancer Prevention & Research Institute of Texas (CPRIT) announced the grants May 14.

Milner, an expert in photomedicine for surgery and diagnostics, is a professor of surgery and biomedical engineering at the Beckman Laser Institute & Medical Clinic at the University of California, Irvine and the university’s Chao Family Comprehensive Cancer Center

In 2013, Milner was named Inventor of the Year by the University of Texas at Austin. At the time, he was a professor of biomedical engineering at UT. One of his major achievements is co-development of the MasSpec Pen, a handheld device that identifies cancerous tissue within 10 seconds during surgical procedures.

Skoda is a professor of molecular medicine in the Department of Biomedicine at the University of Basel and the University Hospital Basel, both in Switzerland. He specializes in developing treatments for myeloproliferative neoplasms, which are a group of blood diseases including leukemia.

Other recruitment grants provided by the institute to Houston-area organizations are:

  • $4 million for recruitment of Susan Bullman to the University of Texas M.D. Anderson Cancer Center. She was an assistant professor at Seattle’s Fred Hutchinson Cancer Center, where she studied the connection between microbes and cancer.
  • $4 million for recruitment of Oren Rom to the University of Texas M.D. Anderson Cancer Center. Rom is an assistant professor of pathology and translational pathobiology at Louisiana State University Shreveport.
  • Nearly $2 million for recruitment of Lauren Hagler to conduct RNA cancer biology at Texas A&M University. She is a postdoctoral scholar in biochemistry at Stanford University.

The institute also awarded grants to five companies in the Houston area:

  • $4.7 million to 7 Hills Pharma for development of immunotherapies to treat cancer and prevent infectious diseases.
  • $4.5 million to Indapta Therapeutics for the Phase 1 trial of a cell therapy for treatment of multiple myeloma and non-Hodgkin’s lymphoma.
  • $2.75 million to Bectas Therapeutics for development of antibodies and biomarkers to overcome a type of resistance T-cell checkpoint therapy.
  • $2.69 million to MS Pen Technologies for development of technology that differentiates between normal tissue and cancerous tissue during surgery.
  • $2.58 million to Crossbridge Bio for development of an antibody-drug combination to treat certain solid tumors.