Greentown Houston has two new automation tools from its corporate partners. Photo via Greentown Labs/LinkedIn

Houston’s Greentown Labs announced new resources and equipment for its members thanks to two corporate partnerships.

Greentown Houston is now home to new tools from Emerson and Puffer to help members implement strong foundations for access to contextualized data.

Automation is the theme with the latest resources, as the process assists with a startup's journey to “standardization and scalability” according to a news release from Greentown Labs. Members will have access to these two units and platforms. The DeltaV Automation Platform is a data-driven decision-making resource that aims to improve operational performance while reducing risks, costs, and downtime. It integrates real-time analytics, advanced automation solutions, sophisticated control systems, and lifecycle services.

Puffer-Sweiven is a localized, single point of contact for sales, service, and applied engineering for Emerson Automation Solutions in the Texas Gulf Coast and Central Texas area with the capabilities to combine with other members in North America to leverage global reach and technologies. Puffer is an Emerson Impact Partner.

With access to the two units, Greentown Labs member companies can further explore easy-to-use, integrated-by-design DeltaV Distributed Control System. With the system, companies and members can better scale new technologies into pilot scale, optimize processes for high quality products, and implement a smart foundation for access to contextualized data. Global ROC is one company that is already utilizing the new resources at Greentown Labs.

“Our member Global ROC, which is developing a solution for cooling tower systems that reduces chemical consumption, saves water, and reduces energy costs, plans to use the system in two ways,” Global ROC CEO Ely Trujillo said to Greentown Labs via LinkedIn.

The startup will be able to create a control method that can be applied to future projects by using and comparing Global ROC’s products with the Delta V’s advanced function blocks. Trujilloalso plans to train team members to set up a Proportional Integral Derivative (PID) controller. The PID involves building a lab test box that connects to the DeltaV’s CHARM modules to control a process to a temperature by varying amperage through the DeltaV’s PID controller.

As part of the 3-year kickoff of the Texas Exchange for Energy and Climate Entrepreneurship (TEX-E), Greentown Labs also celebrated 87 Texas students from The University of Texas at Austin, Texas A&M University, University of Houston, Rice University, Prairie View A&M University, and the Massachusetts Institute of Technology have been accepted into this year's Fellowship. The students will gain access to hands-on experiences including internships, pitch competitions, entrepreneurship bootcamps, courses, and conferences geared to help the climate and energy-transition innovation field.

In

March, Greentown Labs and Browning the Green Space were named the newest accelerator for the Advancing Climatetech and Clean Energy Leaders Program, or ACCEL. The seven selected startups will have a year-long curated curriculum, incubation at Greentown's two locations, and a non-dilutive $25,000 grant.

———

This article originally ran on InnovationMap.

Fervo Energy scored a $244 million round of funding thanks to existing and new investors. Photo via Fervo Energy

Houston geothermal startup secures $244M in funding round led by energy corporate

fresh funding

An Oklahoma-based shale oil and gas leader has backed Fervo Energy's latest round of funding, supporting the startup's geothermal technology yet again.

Fervo announced its latest round of funding this week to the tune of $244 million. The round was led by Devon Energy, a company that's previously backed the startup.

“Demand for around-the-clock clean energy has never been higher, and next-generation geothermal is uniquely positioned to meet this demand,” Tim Latimer, Fervo CEO and co-founder, says in a news release. “Our technology is fully derisked, our pricing is already competitive, and our resource pipeline is vast. This investment enables Fervo to continue to position geothermal at the heart of 24/7 carbon-free energy production.”

Founded in 2017, Fervo provides carbon-free energy through development of next-generation geothermal power. The company has recently reported its success at its Cape Station project, a400 MW project in Beaver County, Utah, as well as at its full-scale commercial pilot, Project Red, in northern Nevada and made possible through a 2021 partnership with Google.

Galvanize Climate Solutions, John Arnold, Liberty Mutual Investments, Marunouchi Innovation Partners, Mercuria, and Mitsubishi Heavy Industries also contributed to the round with existing investors Capricorn’s Technology Impact Fund, Congruent Ventures, DCVC, Elemental Excelerator, Helmerich & Payne, and Impact Science Ventures.

“The energy trilemma is one of the defining global challenges of our time; how can we generate power that is affordable, reliable, and clean,” Houstonian John Arnold, founder of Centaurus Capital and co-chair of Arnold Ventures, says in the release. “Fervo has transformed geothermal into a scalable carbon-free resource ready to meet the moment.”

The fresh funding, according to the company, will go toward Fervo’s work in Cape Station, that is slated to begin delivering clean electricity to the grid in 2026.

“Fervo’s approach to geothermal development leverages leading-edge subsurface, drilling, and completions expertise and techniques Devon has been honing for decades,” David Harris, chief corporate development officer and executive vice president at Devon, says in the release. “We look forward to deepening our partnership with Fervo to capture the full value of Fervo’s first-mover advantage in geothermal and the adjacencies to Devon’s core business.”

In 2022, Fervo raised a $138 million series C round to support the completion of power plants in Nevada and Utah and evaluate new projects in California, Idaho, Oregon, Colorado, and New Mexico, as well as in other countries. This latest investment brings the company's total funds raised to $431 million since its inception in 2017, according to Crunchbase.

------

This article originally ran on EnergyCapital.

A Houston energy professional shares his advice for those looking for a job in climate tech. Photo via Getty Images

5 tips for people looking to expand their career into climate tech, according to this Houston expert

guest column

If hard times build strong people, then extreme weather events build strong climate tech ecosystems. Nobody knows this conventional wisdom better than Houston.

The past six years alone have seen the second costliest natural disaster in United States history (Hurricane Harvey), the longest power outage in Texas history (Winter Storm Uri), and this June, a heat wave that pushed the ERCOT power grid to record levels.

Combine our ever more volatile climate with a post-COVID-19 reckoning of what it means to work for what you believe in, and you get a recipe for the most significant workforce shift the world has ever seen. This workforce shift rules in favor of climate tech, and it will largely target those who’ve grown up, come of age and started their careers in the midst of this increasing volatility. Climate tech will no longer be considered a standalone industry; it will be baked into all existing industries, and those that don’t accept it will die.

I’m proud to be a climate optimist, but I’m also a realist. The truth is no matter what we do, our volatile climate is going to get worse before it gets better. But if extreme weather events build strong climate tech ecosystems, I can live with that.

To students and young professionals considering a jump into climate tech: There is no better place to be right now. Here are five things to keep in mind as you make that jump.

1. Meet as many people from diverse backgrounds working on as many different things as you can. You will likely feel awkward at first, especially if you don’t naturally gravitate toward conferences and happy hours. At the risk of sounding trite, just treat every stranger like a friend you haven’t met yet. Some of us could probably use more friends anyway.

2. The advice in the self-help book How to Win Friends and Influence People, originally published in 1936, is timeless. Possibly the most useful (and most obvious) point is this: Remember that a person’s name is to that person the sweetest and most important sound in any language. Whenever possible, repeat your new friends’ names when you meet them. Especially if you’re seeking a business development, sales or other external-facing role, perfecting this point should be your Holy Grail.

3. Depending on how new you are to energy and climate tech, you’ll hear lots of unfamiliar lingo. Ask questions, take note of what you still don’t get, and do your best to fill in the gaps on the side. Eventually, acronyms will become your best friend. For example: Have you seen what the ITC and the PTC from the IRA will do to the LCOE of PV according to NREL? IYKYK.

4. Coachability is key. You may feel like you’re getting rejected 99 percent of the time, but the way you respond to and learn from those experiences will ensure the other one percent makes all the difference. At the end of the day, climate tech is so vast that it’s impossible to become an expert in everything, and that’s okay. We may not know what’s going on 70 percent of the time, but I’ll take a .300 batting average any day.

5. It may be impossible to become an expert in everything, but you should proactively learn as much as you can, especially given how quickly the ecosystem is expanding. If you’re not embarrassed by how little you knewone year ago, two years ago or even five years ago, then you’re probably not trying hard enough.

These are only five of my takeaways over the past few years and I’ll be the first to admit that I have a long way to go in implementing them. In a way, that’s what makes this journey what it is. I just can’t wait to see what we build.

---

Ryan Davidson is business development lead for CalWave Power Technologies, a California-based company and Greentown Houston member that's focused on converting ocean waves’ hydrokinetic energy into reliable electricity. This article originally ran on EnergyCapital.

Greentown Labs has announced a new accelerator that's dual located in its Houston and Boston-area locations. Photo via GreentownLabs.com

Greentown announces startup accelerator with multinational manufacturer

go make

A climatetech incubator with locations in Houston and Somerville, Massachusetts, has announced an accelerator program with a corporate partner.

Greentown Labs andSaint-Gobain, a multinational manufacturer and distributor of high-performance materials, have opened applications forGreentown Go Build 2023. The program intends to support and accelerate startup-corporate partnerships to advance climatetech, specifically focused on circularity and decarbonizing the built environment per a news release from Greentown.

It's the third Greentown Go Build program the incubator has hosted. Applications, which are open online, are due by August 31.

“The Greentown Go Build program is an opportunity for innovative startups to share how they are disrupting the construction market with innovative and sustainable solutions that address the need for circularity and sustainability and that align with our mission of making the world a better home,” says Minas Apelian, vice president of external and internal venturing at Saint-Gobain. “Through this program, we are eager to identify companies dedicated to reducing our reliance on raw materials and associated supply chain risk to ensure circular solutions result in profitable, sustainable growth for business and sustainable construction solutions for our industries.”

For the six months of the program, the startups selected for the program will have access to mentorship, networking opportunities, and workshops. Program benefits for the participating startups, according to Greentown, include:

  • Access to a structured platform to engage leadership from Saint-Gobain and explore potential partnerships
  • A $25,000 stipend per startup
  • Access to Greentown's community of mentors, partners, and community of climatetech startup experts
  • Access to Saint-Gobain network
  • Desk space and membership within Greentown for the duration of the program

“We are thrilled to be building on our successful track record of Greentown Go programs with Saint-Gobain and look forward to driving decarbonization of the sector through startup-corporate partnerships,” says Kevin T. Taylor, CFO and interim CEO at Greentown Labs. “Saint-Gobain has been an exemplary partner for our Greentown Go programs and for Greentown more broadly—working collaboratively with our startups and deploying many of their technologies. We are eager to meet the world-class building tech startups that apply for the program.”

Greentown Houston is asking its current and potential members what they want in a wet lab. Photo via GreentownLabs.com

Greentown Houston announces plans for wet lab, calls for feedback from members

seeing green

Greentown Houston has announced it's building a new wet lab facility — but first, they need some help from the community.

Greentown Labs, which is dual located at their headquarters in Somerville, Massachusetts, and in the Ion District in Houston, has announced that they are building out a wet lab in their Midtown space.

"We have heard from several startups as well as corporate partners in the ecosystem that are looking for wet lab space," says Lara Cottingham, vice president of strategy, policy, and climate impact at Greentown Labs. "Greentown has experience running wet labs from our location in Somerville. We're excited to be able to offer wet lab space to climatetech startups as an additional amenity to the Ion District.

Although Greentown's Boston-area location has wet lab space, Cottingham says the organization is not interested in copying and pasting that same facility. Greentown wants to provide the tools that the Houston ecosystem needs, and that requires getting feedback from its current and potential members.

"We want to announce to the community that this is something we're going to build — but we still need a lot of feedback and input from startups so we can learn what exactly they need or want to see from the wet lab," Cottingham tells InnovationMap. "No two wet labs are the same."

Right now, there aren't any details available about timeline or specifics of the new facility. Greentown is prioritizing getting feedback from its members and having conversations with potential sponsors and corporate partners.

"Corporate partners are a big part of the ecosystem and the community at Greentown. They can be so many things to our startups — mentors, customers, investors," Cottingham says. "And in this space, they can help us sponsor and financially support the wet lab. We're still fundraising — we have some partners that have committed to funding, but we're still looking for more funding."

In addition to monetary contribution, Cottingham says they are looking for other options as well, from partnerships with equipment providers, hazardous materials management, and more.

Startups that need wet lab space are encouraged to fill out the online form, which will be open through the summer, and potential corporate partners can express their interest online as well.

Greentown Houston opened its doors in 2021 and has since grown to house more than 75 energy and climatetech startups, as well as several accelerators, thanks to support from dozens of corporate partners.

DexMat, a Houston-based materials science startup with tech originating at Rice University, has raised $3 million. Image via Getty Images

Houston climate tech startup closes $3M seed led by Shell

money moves

A material science startup with technology originating at Rice University has announced it has closed its seed round of funding.

DexMat raised $3 million in funding in a round led by Shell Ventures with participation from Overture Ventures, Climate Avengers and several individuals. The company transforms hydrocarbons, renewable fuels, and captured carbon into its flagship product Galvorn.

“DexMat presents an opportunity to capture methane, an abundant and inexpensive resource, and use it to replace materials such as steel, aluminum, and copper with a more sustainable option. We are excited to be part of DexMat’s journey going forward and to realize their ambitions,” says Aimee LaFleur, investment principal at Shell, in a news release.

Alongside the announcement of the seed round, DexMat has named Bryan Guido Hassin as its new CEO. Hassin, who was previously a member of the company's board of directors, has been at the helm of multiple climate tech startups and most recently co-founded Third Derivative. Dmitri Tsentalovich, the previous CEO, is transitioning to CTO.

Bryan Guido Hassin has been named CEO of DexMat. Photo via LinkedIn

“Before joining DexMat, as CEO of Third Derivative, I was introduced to easily over 2,000 innovative new concepts and technologies. DexMat’s solution was one of the most impactful I came across, which is precisely why I’m so excited to be joining the team,” says Hassin in a news release. “The opportunity to eventually cut up to 3 gigatons of CO2 annually in one of the most underserved markets of the clean energy transition — heavy industry — was too important for me to pass by.”

The product impacts the climate tech space on two levels. First, in the production process, the carbon is 'locked' into the Galvorn material structure as a form of long-term carbon storage, according to the release. On the use side, the material displaces carbon-intensive materials — like steel, aluminum, and copper.

"The world's net zero future is entirely dependent on electrifying everything and decarbonizing the built environment," says Shomik Dutta, co-founder and managing partner at Overture Ventures, in the release. "Metals like copper and steel sit at the heart of these trillion-dollar markets, and DexMat's technology promises carbon-negative, lighter, and stronger versions of what we currently mine and melt. Companies like this can help cement America's leadership in the most important transition of our lifetimes."

DexMat was founded to commercialize materials science technology that originally developed in the Rice University laboratory of co-founder Professor Matteo Pasquali. According to the release, the company was built on over $20 million in non-dilutive funding — including grants from from the Air Force Research Laboratory, Air Force Office of Scientific Research, U.S. Department of Energy, NASA, Advanced Functional Fabrics of America, and the National Science Foundation — with Rice University included in the list of original investors.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston engineers develop breakthrough device to advance spinal cord treatment

future of health

A team of Rice University engineers has developed an implantable probe over a hundred times smaller than the width of a hair that aims to help develop better treatments for spinal cord disease and injury.

Detailed in a recent study published in Cell Reports, the probe or sensor, known as spinalNET, is used to explore how neurons in the spinal cord process sensation and control movement, according to a statement from Rice. The research was supported by the National Institutes of Health, Rice, the California-based Salk Institute for Biological Studies, and the philanthropic Mary K. Chapman Foundation based in Oklahoma.

The soft and flexible sensor was used to record neuronal activity in freely moving mice with high resolution for multiple days. Historically, tracking this level of activity has been difficult for researchers because the spinal cord and its neurons move so much during normal activity, according to the team.

“We developed a tiny sensor, spinalNET, that records the electrical activity of spinal neurons as the subject performs normal activity without any restraint,” Yu Wu, a research scientist at Rice and lead author of the study said in a statement. “Being able to extract such knowledge is a first but important step to develop cures for millions of people suffering from spinal cord diseases.”

The team says that before now the spinal cord has been considered a "black box." But the device has already helped the team uncover new findings about the body's rhythmic motor patterns, which drive walking, breathing and chewing.

Lan Luan (from left), Yu Wu, and Chong Xie are working on the breakthrough device. Photo by Jeff Fitlow/Rice University

"Some (spinal neurons) are strongly correlated with leg movement, but surprisingly, a lot of neurons have no obvious correlation with movement,” Wu said in the statement. “This indicates that the spinal circuit controlling rhythmic movement is more complicated than we thought.”

The team said they hope to explore these findings further and aim to use the technology for additional medical purposes.

“In addition to scientific insight, we believe that as the technology evolves, it has great potential as a medical device for people with spinal cord neurological disorders and injury,” Lan Luan, an associate professor of electrical and computer engineering at Rice and a corresponding author on the study, added in the statement.

Rice researchers have developed several implantable, minimally invasive devices to address health and mental health issues.

In the spring, the university announced that the United States Department of Defense had awarded a four-year, $7.8 million grant to the Texas Heart Institute and a Rice team led by co-investigator Yaxin Wang to continue to break ground on a novel left ventricular assist device (LVAD) that could be an alternative to current devices that prevent heart transplantation.

That same month, the university shared news that Professor Jacob Robinson had published findings on minimally invasive bioelectronics for treating psychiatric conditions. The 9-millimeter device can deliver precise and programmable stimulation to the brain to help treat depression, obsessive-compulsive disorder and post-traumatic stress disorder.

Houston clean hydrogen startup to pilot tech with O&G co.

stay gold

Gold H2, a Houston-based producer of clean hydrogen, is teaming up with a major U.S.-based oil and gas company as the first step in launching a 12-month series of pilot projects.

The tentative agreement with the unnamed oil and gas company kicks off the availability of the startup’s Black 2 Gold microbial technology. The technology underpins the startup’s biotech process for converting crude oil into proprietary Gold Hydrogen.

The cleantech startup plans to sign up several oil and gas companies for the pilot program. Gold H2 says it’s been in discussions with companies in North America, Latin America, India, Eastern Europe and the Middle East.

The pilot program is aimed at demonstrating how Gold H2’s technology can transform old oil wells into hydrogen-generating assets. Gold H2, a spinout of Houston-based biotech company Cemvita, says the technology is capable of producing hydrogen that’s cheaper and cleaner than ever before.

“This business model will reshape the traditional oil and gas industry landscape by further accelerating the clean energy transition and creating new economic opportunities in areas that were previously dismissed as unviable,” Gold H2 says in a news release.

The start of the Black 2 Gold demonstrations follows the recent hiring of oil and gas industry veteran Prabhdeep Singh Sekhon as CEO.

“With the proliferation of AI, growth of data centers, and a national boom in industrial manufacturing underway, affordable … carbon-free energy is more paramount than ever,” says Rayyan Islam, co-founder and general partner at venture capital firm 8090 Industries, an investor in Gold H2. “We’re investing in Gold H2, as we know they’ll play a pivotal role in unleashing a new dawn for energy abundance in partnership with the oil industry.”

------

This article originally ran on EnergyCapital.

3 Houston innovators to know this week

who's who

Editor's note: Every week, I introduce you to a handful of Houston innovators to know recently making headlines with news of innovative technology, investment activity, and more. This week's batch includes an e-commerce startup founder, an industrial biologist, and a cellular scientist.

Omair Tariq, co-founder and CEO of Cart.com

Omair Tariq of Cart.com joins the Houston Innovators Podcast to share his confidence in Houston as the right place to scale his unicorn. Photo via Cart.com

Houston-based Cart.com, which operates a multichannel commerce platform, has secured $105 million in debt refinancing from investment manager BlackRock.

The debt refinancing follows a recent $25 million series C extension round, bringing Cart.com’s series C total to $85 million. The scaleup’s valuation now stands at $1.2 billion, making it one of the few $1 billion-plus “unicorns” in the Houston area.

Cart.com was co-founded by CEO Omair Tariq in October 2020. Read more.

Nádia Skorupa Parachin, vice president of industrial biotechnology at Cemvita

Nádia Skorupa Parachin joined Cemvita as vice president of industrial biotechnology. Photo courtesy of Cemvita

Houston-based biotech company Cemvita recently tapped two executives to help commercialize its sustainable fuel made from carbon waste.

Nádia Skorupa Parachin came aboard as vice president of industrial biotechnology, and Phil Garcia was promoted to vice president of commercialization.

Parachin most recently oversaw several projects at Boston-based biotech company Ginkjo Bioworks. She previously co-founded Brazilian biotech startup Integra Bioprocessos. Read more.

Han Xiao, associate professor of chemistry at Rice University

The funds were awarded to Han Xiao, a chemist at Rice University.

A Rice University chemist has landed a $2 million grant from the National Institute of Health for his work that aims to reprogram the genetic code and explore the role certain cells play in causing diseases like cancer and neurological disorders.

The funds were awarded to Han Xiao, the Norman Hackerman-Welch Young Investigator, associate professor of chemistry, from the NIH's Maximizing Investigators’ Research Award (MIRA) program, which supports medically focused laboratories. Xiao will use the five-year grant to advance his work on noncanonical amino acids.

“This innovative approach could revolutionize how we understand and control cellular functions,” Xiao said in the statement. Read more.