While most corporations should be optimizing their company cultures, energy companies specifically need to move the needle on driving forward innovative culture for its employees. Getty Images

The prevailing economic environment has made innovation essential to gaining a competitive edge in the oil and gas industry.

Global economic shifts and the unstable oil market have been considerable factors inhibiting the advancement of innovation in the oil and gas sector. Oil prices have not significantly increased in the past four to five years, while investors and Wall Street hold corporate executives accountable for capital discipline.

In light of these trends, corporate culture and innovation are key factors that hold the potential to drive novelty in the next upcycle. To bring value to shareholders, the oil and gas industry needs to nurture an environment that fosters a radically innovative culture to create new product lines and markets, unique ecosystems, product content, and processes.

Culture from the top down

Organizational culture is one of the essential dynamics that drive innovation. Employee behavior helps influence and promote the acceptance of innovation as a fundamental corporate value. Organizations are therefore admonished to concentrate on fostering an innovative culture that allows the growth of new ideas.

This culture needs to be created by deliberate action on the part of leaders of industry or by indirect measures such as composition and institutional policy directions. A model of innovative culture which translates into cultural transformation emerges as a result of this deliberate action and institutional policy directions.

Various studies over the years have examined innovative culture models focused on cultural characteristics or factors. A comprehensive, innovative culture model that incorporates cultural traits and their determinants is reviewed in this contemplative piece.

Execution  culture vs. innovative culture

In her book, "The Culture Map: Breaking Through the Invisible Boundaries of Global Business," Erin Meyer explains that "ambidextrous culture" is the concurrent search of flexibility and alignment at a business unit/sector which is linked to several organizational outcomes including improved performance and innovation.

This ambidextrous culture can be divided into two broad categories: Execution culture and innovative culture. Execution culture is a working environment that is more process- and task-driven to get things done. The oil and gas industry has typically favored the execution culture, where there is a central decision-maker at the head of the table. Research and recommendations on pertinent matters are typically presented to decision-makers who sit through a PowerPoint presentation. Subsequently, a decision is made based on the facts presented via PowerPoint presentation.

One critical demerit of this setup is that it usually leans towards low-risk conservative judgment. The executive lifestyle has worked in the past in the oil and gas industry due to the high fixed cost, and the "failure is unacceptable" approach in the industry.

With new technologies such as 3D printing, predictive analytics, machine learning, and deep learning, one can test some ideas or thoughts through rapid prototyping in a lab setting to test their hypothesis. Therefore, this type of culture as a sole approach to decision-making in the industry may need to be reconsidered.

Meanwhile, innovative culture is a work environment where leaders encourage and nurture unorthodox thinking in approaching problem solutions and applications. If the energy industry leaned more toward this style of culture, it would help foster innovation and accelerate the innovation landscape in the industry.

Innovative culture is a more design-oriented approach that generates a large pool of options and also incorporates a visual thinking framework. It enhances a creative mode for the audience, and everybody in the company ends up being a decision-maker. This type of culture fosters open innovation, eliminates the fear of expression, and pushes for more collaboration and creativity in the ecosystem.

According to a recent survey done by Accenture Strategy, 76 percent of leaders say they regularly empower employees to be innovative, while only 42 percent of employees agree. This shows an apparent disparity in more than the perceptions of employers versus employees and the belief that innovative culture is not promoted by middle management. This barrier can be broken down by instituting and enforcing an innovative culture.

Staying agile in a transforming world

The world has changed, and it will continue to transform. Various factors are disrupting traditional methods of business management across the globe, and organizational behavior is being impacted significantly. For an organization to be competitive globally, it requires innovation and creativity.

The rate at which businesses are facing competition requires agility. Employees are pressured to give their best and to come up with new ideas at a level even beyond some of history's greatest minds. For many, uncertainty and insecurity abounds. The fear of being made redundant and a resulting lack of trust prevents creativity among employees.

Trust, productive gameplay, and fun — critical components of an innovative culture — can spark creativity and increase global competitiveness. Due to the recent downturn, most teams are burdened with the same amount of work, which was meant for double or tripled their workforce and are still expected to perform at their peak capability. They need the right conducive environment to function.

Implementing action

While the energy industry should avoid trying to copy innovative practices from technology companies, oil and gas companies should review possible case studies that can be incorporated in fostering an acceptable culture for millennials to be attracted to the industry.

Presentation is important

Take a look at your marketing materials, for instance. Skip the stereotypical image of the macho oil guy on a rig operating the brake handle and showcase how the industry is adapting open innovation across sectors such as using predictive analytics and rapid prototyping to help design a safe working environment. Showcasing the conducive culture we experience in oil and gas, which challenges us to think outside the box and solve the world's energy problems will be an excellent way to create opportunities internally in companies and also attract and retain talent from different backgrounds and industries to help solve the world's energy problems.

Consider flexible work initiatives

To help establish and foster an innovative culture in oil and gas, the industry needs to embrace virtual and remote working environments, retraining and refresher courses to keep employees' skills relevant to solving problems, leaders setting a positive example on work-life balance and cutting down or avoiding long-distance travel via virtual meetings. Others essential pointers to consider are, giving employees the freedom to be themselves at work, leadership or management having a positive attitude towards failure, allowing remote work on days on which employees have personal commitments, networking events with company leaders scheduled during office hours, having an open channel for the report of sexual discrimination/harassment incident(s) to the company, among others.


I'd like to close with a quote from another influential book, "The Innovator's Dilemma," by Harvard Professor Clay Christensen. He writes, "When an organization's capabilities reside primarily in its people, changing to address new problems is relatively simple. However, when the capabilities have come to live in processes and values and especially when they have become embedded in culture, change has become extraordinarily complicated."

Establishing a uniquely innovative culture within the energy industry will be a great foundation going forward, for spurring progress in the oil and gas sector.

------

Nii A. Nunoo is senior associate and management consultant within Strategy and Energy Core Operations at KPMG.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

UH receives $2.6M gift to support opioid addiction research and treatment

drug research

The estate of Dr. William A. Gibson has granted the University of Houston a $2.6 million gift to support and expand its opioid addiction research, including the development of a fentanyl vaccine that could block the drug's ability to enter the brain.

The gift builds upon a previous donation from the Gibson estate that honored the scientist’s late son Michael, who died from drug addiction in 2019. The original donation established the Michael C. Gibson Addiction Research Program in UH's department of psychology. The latest donation will establish the Michael Conner Gibson Endowed Professorship in Psychology and the Michael Conner Gibson Research Endowment in the College of Liberal Arts and Social Sciences.

“This incredibly generous gift will accelerate UH’s addiction research program and advance new approaches to treatment,” Daniel O’Connor, dean of the College of Liberal Arts and Social Sciences, said in a news release.

The Michael C. Gibson Addiction Research Program is led by UH professor of psychology Therese Kosten and Colin Haile, a founding member of the UH Drug Discovery Institute. Currently, the program produces high-profile drug research, including the fentanyl vaccine.

According to UH, the vaccine can eliminate the drug’s “high” and could have major implications for the nation’s opioid epidemic, as research reveals Opioid Use Disorder (OUD) is treatable.

The endowed professorship is combined with a one-to-one match from the Aspire Fund Challenge, a $50 million grant program established in 2019 by an anonymous donor. UH says the program has helped the university increase its number of endowed chairs and professorships, including this new position in the department of psychology.

“Our future discoveries will forever honor the memory of Michael Conner Gibson and the Gibson family,” O’Connor added in the release. “And I expect that the work supported by these endowments will eventually save many thousands of lives.”

CenterPoint and partners launch AI initiative to stabilize the power grid

AI infrastructure

Houston-based utility company CenterPoint Energy is one of the founding partners of a new AI infrastructure initiative called Chain Reaction.

Software companies NVIDIA and Palantir have joined CenterPoint in forming Chain Reaction, which is aimed at speeding up AI buildouts for energy producers and distributors, data centers and infrastructure builders. Among the initiative’s goals are to stabilize and expand the power grid to meet growing demand from data centers, and to design and develop large data centers that can support AI activity.

“The energy infrastructure buildout is the industrial challenge of our generation,” Tristan Gruska, Palantir’s head of energy and infrastructure, says in a news release. “But the software that the sector relies on was not built for this moment. We have spent years quietly deploying systems that keep power plants running and grids reliable. Chain Reaction is the result of building from the ground up for the demands of AI.”

CenterPoint serves about 7 million customers in Texas, Indiana, Minnesota and Ohio. After Hurricane Beryl struck Houston in July 2024, CenterPoint committed to building a resilient power grid for the region and chose Palantir as its “software backbone.”

“Never before have technology and energy been so intertwined in determining the future course of American innovation, commercial growth, and economic security,” Jason Wells, chairman, president and CEO of CenterPoint, added in the release.

In November, the utility company got the go-ahead from the Public Utility Commission of Texas for a $2.9 billion upgrade of its Houston-area power grid. CenterPoint serves 2.9 million customers in a 12-county territory anchored by Houston.

A month earlier, CenterPoint launched a $65 billion, 10-year capital improvement plan to support rising demand for power across all of its service territories.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.

Houston researchers develop material to boost AI speed and cut energy use

ai research

A team of researchers at the University of Houston has developed an innovative thin-film material that they believe will make AI devices faster and more energy efficient.

AI data centers consume massive amounts of electricity and use large cooling systems to operate, adding a strain on overall energy consumption.

“AI has made our energy needs explode,” Alamgir Karim, Dow Chair and Welch Foundation Professor at the William A. Brookshire Department of Chemical and Biomolecular Engineering at UH, explained in a news release. “Many AI data centers employ vast cooling systems that consume large amounts of electricity to keep the thousands of servers with integrated circuit chips running optimally at low temperatures to maintain high data processing speed, have shorter response time and extend chip lifetime.”

In a report recently published in ACS Nano, Karim and a team of researchers introduced a specialized two-dimensional thin film dielectric, or electric insulator. The film, which does not store electricity, could be used to replace traditional, heat-generating components in integrated circuit chips, which are essential hardware powering AI.

The thinner film material aims to reduce the significant energy cost and heat produced by the high-performance computing necessary for AI.

Karim and his former doctoral student, Maninderjeet Singh, used Nobel prize-winning organic framework materials to develop the film. Singh, now a postdoctoral researcher at Columbia University, developed the materials during his doctoral training at UH, along with Devin Shaffer, a UH professor of civil engineering, and doctoral student Erin Schroeder.

Their study shows that dielectrics with high permittivity (high-k) store more electrical energy and dissipate more energy as heat than those with low-k materials. Karim focused on low-k materials made from light elements, like carbon, that would allow chips to run cooler and faster.

The team then created new materials with carbon and other light elements, forming covalently bonded sheetlike films with highly porous crystalline structures using a process known as synthetic interfacial polymerization. Then they studied their electronic properties and applications in devices.

According to the report, the film was suitable for high-voltage, high-power devices while maintaining thermal stability at elevated operating temperatures.

“These next-generation materials are expected to boost the performance of AI and conventional electronics devices significantly,” Singh added in the release.