This week's innovators to know are involved in tech — from app development to revolutionizing the energy industry. Courtesy photos

From restaurant review apps to a device that monitors oil rigs, this week's innovators to know are tech savvy to say the least. All three took a chance on Houston for their startups, and that chance is paying off.

Christopher Robart, president of Ambyint USA

Christopher Robart leads Ambyint — a technology company creating the Nest thermostat for oil rigs — with his twin brother, Alex. Courtesy of Ambyint

Christopher Robart — along with his twin brother, Alex — is in the business of business development. The two run Ambyint, an oil and gas tech company that creates the Nest thermostat of oil rigs.

The company is looking to expand its customer base this year, as well as grow to be able to service different types of rig pumps.

Sumit Sikka, co-founder of Crityk

Sumit Sikka moved to Houston in order to grow his restaurant reviewing app. Courtesy of Crityk

What started as a quest to find the best Moscow Mule in Southern California has turned into growing business thriving in Houston's dining scene. Sumit Sikka first visited Houston for an event to promote the app he co-founded, Crityk, and basically never left.

"I packed up some of my bags and decided to try here in Houston," Sikka says." It's a lot easier to get to decision makers here in Houston than in LA."

Moji Karimi, co-founder of Cemvita Factory

Moji Karimi's company can take carbon dioxide from a refinery and convert it into glucose or another chemical. Courtesy of Cemvita

Moji Karimi never thought his oil and gas career would overlap with his sister's medical research. But in some ways, the fact the two of them teamed up to create a company that takes carbon dioxide from the air and turns it into something else, makes perfect sense that it crosses industries.

"There are a lot of opportunities bringing a proven science or technology from one industry into another to solve problems," he says.


Christopher Robart leads Ambyint — a technology company creating the Nest thermostat for oil rigs — with his twin brother, Alex. Courtesy of Ambyint

Oil and gas startup exec positions Houston company for more growth in 2019

Featured Innovator

Most of Christopher Robart's 10-year career in oil and gas has been deliberate and calculated — researching the right startup to be involved in or finding the right buyer for a company he invested in. However, his actual start in the industry wasn't so intentional.

"I sort of fell into oil and gas after I got of college back in 2003," says Robart, who is the president of Ambyint USA. "Before that, I was involved in a few startup things — some digital and some not. I was always sort of an entrepreneur."

Robart shares the passion of entrepreneurialism with his twin brother, Alex, CEO of Ambyint. The two have similar work experiences, since they act as an oil and gas startup team in Houston. One of the first companies the duo bought and sold was PacWest Consulting Partners, which was sold to IHS Energy in 2014, Robart says. The second one, Digital H2O, they founded, grew the team, lead some investments, and sold it to Genscape in 2015.

The pair's newest endeavor is Ambyint, an oilfield smart technology company with Canadian origins. The Robart brothers have been involved in it for about two and a half years.

Christopher Robart spoke with InnovationMap about his career and what he hopes to accomplish with his oil and gas startup in 2019.

InnovationMap: How did you and your brother first get involved in Ambyint?

Christopher Robart: After we left IHS, we knew that our next up was going to be software and upstream oil and gas, but there were a lot of question marks. We did our due diligence. We leveraged all that information we found and settled on which market we wanted to be in. We ended up finding Ambyint and liked what they had built to date, but they had some gaps and shortcomings, particularly on the commercial side, and they had no U.S. presence. We thought those two gaps were something we'd be helpful filling out. We went through a fairly lengthy process to lead an investment into the company, and essentially took over through that process.

IM: So, Ambyint still has an office in Canada?

CR: The Canada office is primarily a technology office, with some sales capabilities up there. The U.S. is primarily sales, marketing, and customer support.

IM: How does the technology work?

CR: The easiest way to explain it is we're like a Nest thermostat for your oil wells. It's a piece of hardware and a piece of software. It's wired into the well's control system and tied up to cloud-based software. From there, we've been deploying artificial intelligence, machine learning, deep learning, etc.

IM: What do you look for in customers?

CR: Oil companies of any shape or size, really. Oil and gas industry aren't really known for being early adopters of technology. There's a lot of resistance to change, particularly at the production level, which we focus on. So we're looking for early adopters looking to lead the way.

We're in pretty much all the major oil-producing areas in the U.S. and Canada. We also have customers in Mexico, Chili, and Egypt. There's a few more countries in the Middle East we're trying to get into.

IM: Are you planning another fundraising round?

CR: We'll embark on a series B in the near future. We closed our series A, and it was pretty large, so we're in a good place. (The series closed in September of 2017 with $11.5 million raised, according to Crunchbase.)

IM: What are your goals for 2019?

CR: We've built a lot of cool technology, and we continue to do that. Our focus for 2019 is to continue to commercialize and expand our customer base. Our sales cycle is pretty long. It could be a year from the time we bring an initial lead to the table, running a pilot, getting results, and developing a plan. It's a long, slow, and, in some cases, a painful process.

When you're doing things like machine learning, you're teaching a machine how to do something a human would do something. What's required to do that is a massive amount of data to start, and from there, it's a never ending journey of data collection and monitoring your accuracy.

We've been focused on one specific artificial lift pump — every well will eventually take a piece of artificial lift pump. We work on the most common artificial lift pump, but it's just one of six key types. In addition to selling more of that pump, we are in the process of expanding to additional lift types.

IM: What keeps you up at night, as it pertains to your business?

CR: Change management. Getting our customers to adopt new technology and embrace change. That's it. We're constantly trying to get our customers to move more quickly.

IM: How do you and your brother work together? Do you each play different roles in the company?

CR: Our backgrounds are similar. We're twins, but we have personality differences. I spend a little more time with our customers than he does and with new product initiatives. I get pretty hands on.

His mandate is less focused on walking and talking with customers and more on managing the functions of the business and working with the leadership team. As well as financing and fundraising.

We've got a pretty good division of labor, but there is a lot of overlap of what we do.

IM: What are some of the pros and cons of being in Houston?

CR: Obviously the pro of being in Houston is it being the oil capital of the world. All our customers are here. It's sort of a must.

The downside of running a technology company in town is that tech talent is quite thin on the ground in Houston — especially what we're looking for. So, we don't have any tech team members in the Houston office. I'll put it mildly in that we are skeptical of the talent pool for really strong software developers in the Houston market.

------

Portions of this interview have been edited.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Texas university to lead new FAA tech center focused on drones

taking flight

The Texas A&M University System will run the Federal Aviation Administration’s new Center for Advanced Aviation Technologies, which will focus on innovations like commercial drones.

“Texas is the perfect place for our new Center for Advanced Aviation Technologies,” U.S. Transportation Secretary Sean Duffy said in a release. “From drones delivering your packages to powered lift technologies like air taxis, we are at the cusp of an aviation revolution. The [center] will ensure we make that dream a reality and unleash American innovation safely.”

U.S. Sen. Ted Cruz, a Texas Republican, included creation of the center in the FAA Reauthorization Act of 2024. The center will consist of an airspace laboratory, flight demonstration zones, and testing corridors.

Texas A&M University-Corpus Christi will lead the initiative, testing unstaffed aircraft systems and other advanced technologies. The Corpus Christi campus houses the Autonomy Research Institute, an FAA-designated test site. The new center will be at Texas A&M University-Fort Worth.

The College Station-based Texas A&M system says the center will “bring together” its 19 institutions, along with partners such as the University of North Texas in Denton and Southern Methodist University in University Park.

According to a Department of Transportation news release, the center will play “a pivotal role” in ensuring the safe operation of advanced aviation technologies in public airspace.

The Department of Transportation says it chose the Texas A&M system to manage the new center because of its:

  • Proximity to major international airports and the FAA’s regional headquarters in Fort Worth
  • Existing infrastructure for testing of advanced aviation technologies
  • Strong academic programs and industry partnerships

“I’m confident this new research and testing center will help the private sector create thousands of high-paying jobs and grow the Texas economy through billions in new investments,” Cruz said.

“This is a significant win for Texas that will impact communities across our state,” the senator added, “and I will continue to pursue policies that create new jobs, and ensure the Lone Star State continues to lead the way in innovation and the manufacturing of emerging aviation technologies.”

Texas Republicans are pushing to move NASA headquarters to Houston

space city

Two federal lawmakers from Texas are spearheading a campaign to relocate NASA’s headquarters from Washington, D.C., to the Johnson Space Center in Houston’s Clear Lake area. Houston faces competition on this front, though, as lawmakers from two other states are also vying for this NASA prize.

With NASA’s headquarters lease in D.C. set to end in 2028, U.S. Sen. Ted Cruz, a Texas Republican, and U.S. Rep. Brian Babin, a Republican whose congressional district includes the Johnson Space Center, recently wrote a letter to President Trump touting the Houston area as a prime location for NASA’s headquarters.

“A central location among NASA’s centers and the geographical center of the United States, Houston offers the ideal location for NASA to return to its core mission of space exploration and to do so at a substantially lower operating cost than in Washington, D.C.,” the letter states.

Cruz is chairman of the Senate Committee on Commerce, Science, and Transportation; and Babin is chairman of the House Committee on Science, Space, and Technology. Both committees deal with NASA matters. Twenty-five other federal lawmakers from Texas, all Republicans, signed the letter.

In the letter, legislators maintain that shifting NASA’s headquarters to the Houston area makes sense because “a seismic disconnect between NASA’s headquarters and its missions has opened the door to bureaucratic micromanagement and an erosion of [NASA] centers’ interdependence.”

Founded in 1961, the $1.5 billion, 1,620-acre Johnson Space Center hosts NASA’s mission control and astronaut training operations. More than 12,000 employees work at the 100-building complex.

According to the state comptroller, the center generates an annual economic impact of $4.7 billion for Texas, and directly and indirectly supports more than 52,000 public and private jobs.

In pitching the Johnson Space Center for NASA’s HQ, the letter points out that Texas is home to more than 2,000 aerospace, aviation, and defense-related companies. Among them are Elon Musk’s SpaceX, based in the newly established South Texas town of Starbase; Axiom Space and Intuitive Machines, both based in Houston; and Firefly Aerospace, based in the Austin suburb of Cedar Park.

The letter also notes the recent creation of the Texas Space Commission, which promotes innovation in the space and commercial aerospace sectors.

Furthermore, the letter cites Houston-area assets for NASA such as:

  • A strong business environment.
  • A low level of state government regulation.
  • A cost of living that’s half of what it is in the D.C. area.

“Moving the NASA headquarters to Texas will create more jobs, save taxpayer dollars, and reinvigorate America’s space agency,” the letter says.

Last November, NASA said it was hunting for about 375,000 to 525,000 square feet of office space in the D.C. area to house the agency’s headquarters workforce. About 2,500 people work at the agency’s main offices. NASA’s announcement set off a scramble among three states to lure the agency’s headquarters.

Aside from officials in Texas, politicians in Florida and Ohio are pressing NASA to move its headquarters to their states. Florida and Ohio both host major NASA facilities.

NASA might take a different approach, however. “NASA is weighing closing its headquarters and scattering responsibilities among the states, a move that has the potential to dilute its coordination and influence in Washington,” Politico reported in March.

Meanwhile, Congressional Delegate Eleanor Holmes Norton, a Democrat who represents D.C., introduced legislation in March that would prohibit relocating a federal agency’s headquarters (including NASA’s) away from the D.C. area without permission from Congress.

“Moving federal agencies is not about saving taxpayer money and will degrade the vital services provided to all Americans across the country,” Norton said in a news release. “In the 1990s, the Bureau of Land Management moved its wildfire staff out West, only to move them back when Congress demanded briefings on new wildfires.”

Houston research breakthrough could pave way for next-gen superconductors

Quantum Breakthrough

A study from researchers at Rice University, published in Nature Communications, could lead to future advances in superconductors with the potential to transform energy use.

The study revealed that electrons in strange metals, which exhibit unusual resistance to electricity and behave strangely at low temperatures, become more entangled at a specific tipping point, shedding new light on these materials.

A team led by Rice’s Qimiao Si, the Harry C. and Olga K. Wiess Professor of Physics and Astronomy, used quantum Fisher information (QFI), a concept from quantum metrology, to measure how electron interactions evolve under extreme conditions. The research team also included Rice’s Yuan Fang, Yiming Wang, Mounica Mahankali and Lei Chen along with Haoyu Hu of the Donostia International Physics Center and Silke Paschen of the Vienna University of Technology. Their work showed that the quantum phenomenon of electron entanglement peaks at a quantum critical point, which is the transition between two states of matter.

“Our findings reveal that strange metals exhibit a unique entanglement pattern, which offers a new lens to understand their exotic behavior,” Si said in a news release. “By leveraging quantum information theory, we are uncovering deep quantum correlations that were previously inaccessible.”

The researchers examined a theoretical framework known as the Kondo lattice, which explains how magnetic moments interact with surrounding electrons. At a critical transition point, these interactions intensify to the extent that the quasiparticles—key to understanding electrical behavior—disappear. Using QFI, the team traced this loss of quasiparticles to the growing entanglement of electron spins, which peaks precisely at the quantum critical point.

In terms of future use, the materials share a close connection with high-temperature superconductors, which have the potential to transmit electricity without energy loss, according to the researchers. By unblocking their properties, researchers believe this could revolutionize power grids and make energy transmission more efficient.

The team also found that quantum information tools can be applied to other “exotic materials” and quantum technologies.

“By integrating quantum information science with condensed matter physics, we are pivoting in a new direction in materials research,” Si said in the release.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.