DivInc wrapped its inaugural Clean Energy Tech accelerator this month. Photo via LinkedIn

DivInc, a Texas-based accelerator focused on uplifting people of color and women founders, recently concluded their inaugural clean energy cohort, catapulting several early-stage companies to major milestones.

The 12-week intensive Clean Energy Tech accelerator program sponsored by Chevron and Microsoft instructed seven clean energy startup founders at the Ion, through a variety of workshops, mentor sessions, and deep dives with VC professionals. DivInc also gave each startup a non-dilutive $10,000 grant to use during the course of the program.

Cherise Luter, marketing director at DivInc, said the Austin-based development program decided to expand from its previous accelerators — Women in Tech and Sports Tech — into clean energy because it is a newer industry with ample potential.

“Clean energy is an emerging space where founders like ours, women and POC founders, can really get in on the ground floor in a great way so that they are building as well as benefiting from this new space,” Luter tells EnergyCapital.

Luter said corporate partners Chevron and Microsoft were similarly on board with prioritizing diversity in the clean energy sector and together they agreed Houston would be the best place to headquarter the accelerator for its expansive resources, particularly VCs.

“Houston, as the energy capital, the resources, connections, and network are here, and we have found that those are the things that are most important for our founders to be able to really take their companies to the next level,” Luter explains.

The participating startups’ focuses ranged from innovations in solar power to electric vehicle charging stations, but these corporations were all united in aiding the clean energy transition.

“It’s so interesting with this particular cohort, how they are really merging the human part of clean energy – how it’s contributing to a better life for people–with a better situation for our environment and our climate,” Luter says.

The inaugural cohort included one to two entrepreneurs from the following companies:

  • BlackCurrant Inc., based in Chicago, is transforming the hydrogen industry by simplifying OTC transactions and offering a comprehensive platform for businesses to seamlessly obtain equipment, fuel, and services essential for hydrogen adoption.
  • Owanga Solar, founded by two Emory University law students in Georgia, delivers sustainable and affordable solar energy solutions to households and businesses in the Democratic Republic of Congo.
  • Maryland-based Pirl Technology Inc. is building next generation electric vehicle charging stations.
  • Houston-based Quantum New Energy has a software platform, called EnerWisely, that helps those who own assets that reduce carbon emissions, like solar panels, generate high quality, verifiable carbon credits that don’t green wash.
  • SOL roofs, founded by Austinite Daniel Duerto, is creating the next generation of solar roofs through innovating existing technologies.
  • WIP International Services LLC, a Houston-based company, is addressing drinking water scarcity with its atmospheric water generators, which produce fresh drinking water from the humidity in the air.

Tracy Jackson, CEO of WIP International Services LLC, announced on the accelerator’s demo day her Houston-based company that produces atmospheric water generators, which transform humid air into clean drinking water, contracted with several schools in El Salvador for a pilot program to send 40 of their smaller models.

“We’re going to continue on our path and we’re looking forward to signing more international contracts and look forward to having any local opportunities that we can develop as well,” Jackson says.

Since the program ended, Luter shared WIP has also secured a “major international contract in Mexico.”

Luter also shared that accelerator participant Quantum New Energy, a climatech Houston-based company, has pre-launched expansion of EnerWisely, their software that tracks carbon credits, for commercial facilities.

Luter says DivInc plans to eventually host another cohort of their clean energy accelerator and they are continuing to accept applications from founders on a rolling basis.

------

This article originally ran on EnergyCapital.

A panel of experts discussed decentralized web and Web3 technology — and its potential for impacting communities. Photo courtesy of DivInc

Web3 technology has the potential to bring communities together, say Houston innovators

discussing DWeb

Houston innovators dispelled some of the misconceptions about the decentralized web and Web3 technology at a recent Ion panel, highlighting the technology’s ability to bring communities together.

DivInc, a Texas-based accelerator focused on helping BIPOC and female founders on their entrepreneurial journeys, hosted a panel to discuss the benefits of transitioning to DWeb for entrepreneurs, personal success stories of using Web3 technology, and promoted its inaugural DWeb for Social Impact Accelerator.

The panelists included Giorgio Villani, founder of Spindletop Digital; Akeel Bernard, community development manager of Impact Hub Houston; and Ayoola John, co-founder and CEO of Astronaut. The discussion was moderated by Cherise Luter, marketing director of DivInc.

With the application for the DWeb 12-week accelerator program live, announced earlier this year, Luter says the panel was initiated to help explain the links between impact entrepreneurship and DWeb, two areas that people may think are very separate.

“This is our first time hosting a social impact accelerator here in Houston and we’re really excited about it. We added this extra piece of Web3, DWeb – how social entrepreneurs are utilizing this new technology to push forward their vision and bring about their startups,’” Luter says.

Villani, a founder of multiple companies that employ Web3 innovation, defined this technology as a tool of decentralization in which users are responsible for their own data and transactions are kept transparent by being publicly accessible. Villani contrasted this setup to the modern internet, known as Web2, in which users entrust third parties with encrypting their personal data, allowing them to mine and profit from this information.

“Web3 is a flipping of the script a little bit – it’s where we’re focusing primarily on the individual, where the individual is being empowered. Everybody manages their own keys and you don’t have to trust a third party to do anything within the system … you don’t have to cede your power to third party entities – it’s really an empowering thing to do,” Villani explains.

Villani addressed the misunderstanding that the decentralized web is too complicated for the average person to use by highlighting his partnership with multimedia Houston artist J. Omar Ochoa. Ochoa is incorporating Web3 technologies like AI and NFTs into an exhibit, allowing him to interact directly with buyers.

“The misconception is that (Web3) is difficult or too technical and it’s really not. There’s some stuff that takes a little bit of work but once you’ve done that the whole world of Web3 opens up in front of you,” Villani says.

For Villani, Web3 technologies are about the opportunity for connection.

“When you look around you, a lot of people these days are lonely and it’s funny because we have these platforms like Facebooks, Instagrams, WhatsApps, Snapchats and they’re all designed to bring us together but if you really look around you we’re not together,” Villani explains. “For me fundamentally, we have to reimagine how we build social networks, how we connect people.”

Web3 technologies are not all inherently about decentralization of the internet so much as rethinking how to rebuild the web to bring people together based on shared interests, adds John, co-founder of a social impact company that uses Web3 to help brands build online communities.

In contrast to much of the tech world, John also says that NFTs and cryptocurrencies, both of which are considered Web3 tools as they operate on blockchains, are not components of DWeb because they are tied up by monopolies. As the majority of NFTs are sold on one website and Bitcoin continues to dominate the cryptocurrency market, John explains they can not qualify as decentralized.

“I believe I can make an argument that crypto at its core is not about decentralization. What I believe crypto is and the Web3 movement is about reimagination,” John shares.

Bernard, who works directly with social impact entrepreneurs at Impact Hub Houston, says he anticipates founders looking to secure investors for their DWeb related companies will struggle, at first, because they must concisely explain the technology and business model at play. Bernard says he previously coached entrepreneurs on how to explain to investors that investing in social impact companies is not charity but a typical investment that will pay returns. Bernard expects DWeb focused companies will face similar uphill battles of getting investors to understand their concepts.

“I think with DWeb because it’s a newer network it’s going to require social impact entrepreneurs to educate investors and also users on the benefits of DWeb,” Bernard explains. “You’re going to have to be able to explain to them in a clear and consistent way especially to the investors, folks that have the means but don’t understand what DWeb is, how it can be utilized for success.”

Photo courtesy of DivInc

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston scientists develop breakthrough AI-driven process to design, decode genetic circuits

biotech breakthrough

Researchers at Rice University have developed an innovative process that uses artificial intelligence to better understand complex genetic circuits.

A study, published in the journal Nature, shows how the new technique, known as “Combining Long- and Short-range Sequencing to Investigate Genetic Complexity,” or CLASSIC, can generate and test millions of DNA designs at the same time, which, according to Rice.

The work was led by Rice’s Caleb Bashor, deputy director for the Rice Synthetic Biology Institute and member of the Ken Kennedy Institute. Bashor has been working with Kshitij Rai and Ronan O’Connell, co-first authors on the study, on the CLASSIC for over four years, according to a news release.

“Our work is the first demonstration that you can use AI for designing these circuits,” Bashor said in the release.

Genetic circuits program cells to perform specific functions. Finding the circuit that matches a desired function or performance "can be like looking for a needle in a haystack," Bashor explained. This work looked to find a solution to this long-standing challenge in synthetic biology.

First, the team developed a library of proof-of-concept genetic circuits. It then pooled the circuits and inserted them into human cells. Next, they used long-read and short-read DNA sequencing to create "a master map" that linked each circuit to how it performed.

The data was then used to train AI and machine learning models to analyze circuits and make accurate predictions for how untested circuits might perform.

“We end up with measurements for a lot of the possible designs but not all of them, and that is where building the (machine learning) model comes in,” O’Connell explained in the release. “We use the data to train a model that can understand this landscape and predict things we were not able to generate data on.”

Ultimately, the researchers believe the circuit characterization and AI-driven understanding can speed up synthetic biology, lead to faster development of biotechnology and potentially support more cell-based therapy breakthroughs by shedding new light on how gene circuits behave, according to Rice.

“We think AI/ML-driven design is the future of synthetic biology,” Bashor added in the release. “As we collect more data using CLASSIC, we can train more complex models to make predictions for how to design even more sophisticated and useful cellular biotechnology.”

The team at Rice also worked with Pankaj Mehta’s group in the department of physics at Boston University and Todd Treangen’s group in Rice’s computer science department. Research was supported by the National Institutes of Health, Office of Naval Research, the Robert J. Kleberg Jr. and Helen C. Kleberg Foundation, the American Heart Association, National Library of Medicine, the National Science Foundation, Rice’s Ken Kennedy Institute and the Rice Institute of Synthetic Biology.

James Collins, a biomedical engineer at MIT who helped establish synthetic biology as a field, added that CLASSIC is a new, defining milestone.

“Twenty-five years ago, those early circuits showed that we could program living cells, but they were built one at a time, each requiring months of tuning,” said Collins, who was one of the inventors of the toggle switch. “Bashor and colleagues have now delivered a transformative leap: CLASSIC brings high-throughput engineering to gene circuit design, allowing exploration of combinatorial spaces that were previously out of reach. Their platform doesn’t just accelerate the design-build-test-learn cycle; it redefines its scale, marking a new era of data-driven synthetic biology.”

Axiom Space wins NASA contract for fifth private mission, lands $350M in financing

ready for takeoff

Editor's note: This story has been updated to include information about Axiom's recent funding.

Axiom Space, a Houston-based space infrastructure company that’s developing the first commercial space station, has forged a deal with NASA to carry out the fifth civilian-staffed mission to the International Space Station.

Axiom Mission 5 is scheduled to launch in January 2027, at the earliest, from NASA’s Kennedy Space Center in Florida. The crew of non-government astronauts is expected to spend up to 14 days docked at the International Space Station (ISS). Various science and research activities will take place during the mission.

The crew for the upcoming mission hasn’t been announced. Previous Axiom missions were commanded by retired NASA astronauts Michael López-Alegría, the company’s chief astronaut, and Peggy Whitson, the company’s vice president of human spaceflight.

“All four previous [Axiom] missions have expanded the global community of space explorers, diversifying scientific investigations in microgravity, and providing significant insight that is benefiting the development of our next-generation space station, Axiom Station,” Jonathan Cirtain, president and CEO of Axiom, said in a news release.

As part of Axiom’s new contract with NASA, Voyager Technologies will provide payload services for Axiom’s fifth mission. Voyager, a defense, national security, and space technology company, recently announced a four-year, $24.5 million contract with NASA’s Johnson Space Center in Houston to provide mission management services for the ISS.

Axiom also announced today, Feb. 12, that it has secured $350 million in a financing round led by Type One Ventures and Qatar Investment Authority.

The company shared in a news release that the funding will support the continued development of its commercial space station, known as Axiom Station, and the production of its Axiom Extravehicular Mobility Unit (AxEMU) under its NASA spacesuit contract.

NASA awarded Axiom a contract in January 2020 to create Axiom Station. The project is currently underway.

"Axiom Space isn’t just building hardware, it’s building the backbone of humanity’s next era in orbit," Tarek Waked, Founding General Partner at Type One Ventures, said in a news release. "Their rare combination of execution, government trust, and global partnerships positions them as the clear successor-architect for life after the ISS. This is how the United States continues to lead in space.”

Houston edtech company closes oversubscribed $3M seed round

fresh funding

Houston-based edtech company TrueLeap Inc. closed an oversubscribed seed round last month.

The $3.3 million round was led by Joe Swinbank Family Limited Partnership, a venture capital firm based in Houston. Gamper Ventures, another Houston firm, also participated with additional strategic partners.

TrueLeap reports that the funding will support the large-scale rollout of its "edge AI, integrated learning systems and last-mile broadband across underserved communities."

“The last mile is where most digital transformation efforts break down,” Sandip Bordoloi, CEO and president of TrueLeap, said in a news release. “TrueLeap was built to operate where bandwidth is limited, power is unreliable, and institutions need real systems—not pilots. This round allows us to scale infrastructure that actually works on the ground.”

True Leap works to address the digital divide in education through its AI-powered education, workforce systems and digital services that are designed for underserved and low-connectivity communities.

The company has created infrastructure in Africa, India and rural America. Just this week, it announced an agreement with the City of Kinshasa in the Democratic Republic of Congo to deploy a digital twin platform for its public education system that will allow provincial leaders to manage enrollment, staffing, infrastructure and performance with live data.

“What sets TrueLeap apart is their infrastructure mindset,” Joe Swinbank, General Partner at Joe Swinbank Family Limited Partnership, added in the news release. “They are building the physical and digital rails that allow entire ecosystems to function. The convergence of edge compute, connectivity, and services makes this a compelling global infrastructure opportunity.”

TrueLeap was founded by Bordoloi and Sunny Zhang and developed out of Born Global Ventures, a Houston venture studio focused on advancing immigrant-founded technology. It closed an oversubscribed pre-seed in 2024.