Gold H2 has aligned itself with an oil and gas company, making its Black 2 Gold microbial technology available for the first time. Photo via cemvita.com

Gold H2, a Houston-based producer of clean hydrogen, is teaming up with a major U.S.-based oil and gas company as the first step in launching a 12-month series of pilot projects.

The tentative agreement with the unnamed oil and gas company kicks off the availability of the startup’s Black 2 Gold microbial technology. The technology underpins the startup’s biotech process for converting crude oil into proprietary Gold Hydrogen.

The cleantech startup plans to sign up several oil and gas companies for the pilot program. Gold H2 says it’s been in discussions with companies in North America, Latin America, India, Eastern Europe and the Middle East.

The pilot program is aimed at demonstrating how Gold H2’s technology can transform old oil wells into hydrogen-generating assets. Gold H2, a spinout of Houston-based biotech company Cemvita, says the technology is capable of producing hydrogen that’s cheaper and cleaner than ever before.

“This business model will reshape the traditional oil and gas industry landscape by further accelerating the clean energy transition and creating new economic opportunities in areas that were previously dismissed as unviable,” Gold H2 says in a news release.

The start of the Black 2 Gold demonstrations follows the recent hiring of oil and gas industry veteran Prabhdeep Singh Sekhon as CEO.

“With the proliferation of AI, growth of data centers, and a national boom in industrial manufacturing underway, affordable … carbon-free energy is more paramount than ever,” says Rayyan Islam, co-founder and general partner at venture capital firm 8090 Industries, an investor in Gold H2. “We’re investing in Gold H2, as we know they’ll play a pivotal role in unleashing a new dawn for energy abundance in partnership with the oil industry.”

------

This article originally ran on EnergyCapital.

This week's roundup of Houston innovators includes Omair Tariq of Cart.com, Nádia Skorupa Parachin of Cemvita, and Han Xiao of Rice University. Photos courtesy

3 Houston innovators to know this week

who's who

Editor's note: Every week, I introduce you to a handful of Houston innovators to know recently making headlines with news of innovative technology, investment activity, and more. This week's batch includes an e-commerce startup founder, an industrial biologist, and a cellular scientist.

Omair Tariq, co-founder and CEO of Cart.com

Omair Tariq of Cart.com joins the Houston Innovators Podcast to share his confidence in Houston as the right place to scale his unicorn. Photo via Cart.com

Houston-based Cart.com, which operates a multichannel commerce platform, has secured $105 million in debt refinancing from investment manager BlackRock.

The debt refinancing follows a recent $25 million series C extension round, bringing Cart.com’s series C total to $85 million. The scaleup’s valuation now stands at $1.2 billion, making it one of the few $1 billion-plus “unicorns” in the Houston area.

Cart.com was co-founded by CEO Omair Tariq in October 2020. Read more.

Nádia Skorupa Parachin, vice president of industrial biotechnology at Cemvita

Nádia Skorupa Parachin joined Cemvita as vice president of industrial biotechnology. Photo courtesy of Cemvita

Houston-based biotech company Cemvita recently tapped two executives to help commercialize its sustainable fuel made from carbon waste.

Nádia Skorupa Parachin came aboard as vice president of industrial biotechnology, and Phil Garcia was promoted to vice president of commercialization.

Parachin most recently oversaw several projects at Boston-based biotech company Ginkjo Bioworks. She previously co-founded Brazilian biotech startup Integra Bioprocessos. Read more.

Han Xiao, associate professor of chemistry at Rice University

The funds were awarded to Han Xiao, a chemist at Rice University.

A Rice University chemist has landed a $2 million grant from the National Institute of Health for his work that aims to reprogram the genetic code and explore the role certain cells play in causing diseases like cancer and neurological disorders.

The funds were awarded to Han Xiao, the Norman Hackerman-Welch Young Investigator, associate professor of chemistry, from the NIH's Maximizing Investigators’ Research Award (MIRA) program, which supports medically focused laboratories. Xiao will use the five-year grant to advance his work on noncanonical amino acids.

“This innovative approach could revolutionize how we understand and control cellular functions,” Xiao said in the statement. Read more.

Nádia Skorupa Parachin joined Cemvita as vice president of industrial biotechnology. Photo courtesy of Cemvita

Houston biotech company expands leadership as it commercializes sustainable products

joining the team

Houston-based biotech company Cemvita recently tapped two executives to help commercialize its sustainable fuel made from carbon waste.

Nádia Skorupa Parachin came aboard as vice president of industrial biotechnology, and Phil Garcia was promoted to vice president of commercialization.

Parachin most recently oversaw several projects at Boston-based biotech company Ginkjo Bioworks. She previously co-founded Brazilian biotech startup Integra Bioprocessos.

Parachin will lead the Cemvita team that’s developing technology for production of bio-manufactured oil.

“It’s a fantastic moment, as we’re poised to take our prototyping to the next level, and all under the innovative direction of our co-founder Tara Karimi,” Parachin says in a news release. “We will be bringing something truly remarkable to market and ensuring it’s cost-effective.”

Moji Karimi, co-founder and CEO of Cemvita, says the hiring of Parachin represents “the natural next step” toward commercializing the startup’s carbon-to-oil process.

“Her background prepared her to bring the best out of the scientists at the inflection point of commercialization — really bringing things to life,” says Moji Karimi, Tara’s brother.

Parachin joins Garcia on Cemvita’s executive team.

Before being promoted to vice president of commercialization, Garcia was the startup’s commercial director and business development manager. He has a background in engineering and business development.

Founded in 2017, Cemvita recently announced a breakthrough that enables production of large quantities of oil derived from carbon waste.

In 2023, United Airlines agreed to buy up to one billion gallons of sustainable aviation fuel from Cemvita’s first full-scale plant over the course of 20 years.

Cemvita’s investors include the UAV Sustainable Flight Fund, an investment arm of Chicago-based United; Oxy Low Carbon Ventures, an investment arm of Houston-based energy company Occidental Petroleum; and Japanese equipment and machinery manufacturer Mitsubishi Heavy Industries.

------

This article originally ran on EnergyCapital.

Prabhdeep Singh Sekhon, CEO of Gold H2, joins the Houston Innovators Podcast. Photo courtesy of Gold H2

Newly named CEO to lead Houston gold hydrogen biotech co. into high-growth phase

HOUSTON INNOVATORS PODCAST EPISODE 239

Using microbes to sustainably unlock low-cost hydrogen sounds like the work of science fiction, but one Houston company is doing just that.

Gold H2, a spin-off company from Cemvita, has bioengineered subsurface microbes to use in wells to consume carbon and generate clean hydrogen. The technology was piloted two years ago by Cemvita, and now, as its own company with a new CEO, it's safe to say Gold H2's on its way.

"First of all, that was groundbreaking," Prabhdeep Singh Sekhon, CEO of Gold H2, says of the 2022 pilot in the Permian Basin, "to be able to use bugs to produce hydrogen within a couple of days."

"2024 is supposed to be the year where Gold H2 takes off," Sekhon, who joined the company in April, tells the Houston Innovators Podcast. "It was one of those opportunities that I couldn't turn down. I had been following the company. I thought, 'here is this innovative tech that's on the verge of providing a ground-breaking solution to the energy transition — what better time to join the team.'"

Sekhon shares on the show how his previous roles at NextEra Energy Resources and Hess have prepared him for Gold H2. Specifically, as a leader on NextEra’s strategy and business development team, he says he was tasked with figuring out what the energy industry looks like in the next five, 10, and 20 years.

"Green hydrogen was a huge buzz, but one of the things I realized when I started looking at green hydrogen was that it's very expensive," Sekhon says. "I wanted to look at alternatives."

This journey led him to what Cemvita was doing with gold hydrogen, Sekhon says, explaining that the ability to use biotechnology to provide a new revenue stream from the mostly used up wells struck him as something with major potential.

"The idea of repurposing existing oil and gas assets to become hydrogen assets, leveraging current infrastructure to drive down overall deliver costs — to me I thought, 'wow, if they can make this works, that's brilliant,'" he says.

Now, as CEO, Sekhon gets to lead the company toward these goals, which include expanding internationally. He explains on the show that Gold H2 is interested in expanding to any part of the world where there's interest in implementing their biotech. In order to support the growth, Sekhon says they are looking to raise funding this year with plans for an additional round, if needed, in 2025.

"When we compare our tech to the rest of the stack, I think we blow the competition out of the water," Sekhon says, explaining that Gold H2's approach to gold hydrogen development is novel when you look at emerging technology in the space. "We're using a biological process — cheap bugs that eat oil for a living."

Prabhdeep Singh Sekhon, who previously held roles at companies such as NextEra Energy Resources and Hess, was named CEO of Gold H2. Photo courtesy of Gold H2

Exclusive: Houston hydrogen spinout names energy industry veteran as CEO

good as gold

Cleantech startup Gold H2, a spinout of Houston-based energy biotech company Cemvita, has named oil and gas industry veteran Prabhdeep Singh Sekhon as its CEO.

Sekhon previously held roles at companies such as NextEra Energy Resources and Hess. Most recently, he was a leader on NextEra’s strategy and business development team.

Gold H2 uses microbes to convert oil and gas in old, uneconomical wells into clean hydrogen. The approach to generating clean hydrogen is part of a multibillion-dollar market.

Gold H2 spun out of Cemvita last year with Moji Karimi, co-founder of Cemvita, leading the transition. Gold H2 spun out after successfully piloting its microbial hydrogen technology, producing hydrogen below 80 cents per kilogram.

The Gold H2 venture had been a business unit within Cemvita.

“I was drawn to Gold H2 because of its innovative mission to support the U.S. economy in this historical energy transition,” Sekhon says in a news release. “Over the last few years, my team [at NextEra] was heavily focused on the commercialization of clean hydrogen. When I came across Gold H2, it was clear that it was superior to each of its counterparts in both cost and [carbon intensity].”

Gold H2 explains that oil and gas companies have wrestled for decades with what to do with exhausted oil fields. With Gold H2’s first-of-its-kind biotechnology, these companies can find productive uses for oil wells by producing clean hydrogen at a low cost, the startup says.

“There is so much opportunity ahead of Gold H2 as the first company to use microbes in the subsurface to create a clean energy source,” Sekhon says. “Driving this dynamic industry change to empower clean hydrogen fuel production will be extremely rewarding.”

In 2022, Gold H2 celebrated its successful Permian Basin pilot and raised early-stage funding. In addition to Gold H2, Cemvita also spun out a resource mining operation called Endolith. In a podcast episode, Karimi discussed Cemvita's growth and spinout opportunities.

This week's roundup of Houston innovators includes Moji Karimi of Cemvita Factory, Thomas Vassiliades of BiVACOR, and Veronica Wu of First Bight Ventures. Photos courtesy

3 Houston innovators to know this week

who's who

Editor's note: In this week's roundup of Houston innovators to know, I'm introducing you to three local innovators across industries recently making headlines in Houston across biotech and medical device.

Moji Karimi, co-founder and CEO of Cemvita

Moji Karimi joins the Houston Innovators Podcast to share how Cemvita has evolved with three distinct lines of energy transition businesses. Photo courtesy of Digital Wildcatters

A lot has changed since Moji Karimi co-founded his biotech company Cemvita with his sister Tara in 2017. In fact, a lot has changed just in 2023 — for Cemvita, for the energy transition, and for world as a whole.

In the past year, Cemvita has evolved its business to target three verticals, all within the company's mission of using synthetic biology to create solutions for the energy transition. Now, as Karimi explains on the Houston Innovators Podcast, Cemvita is a startup of startups.

While tackling the various verticals might seem ambitious, Karimi explains that they are all aligned with Cemvita's core mission and technology.

"If you think about it, everything we're doing has something to do with nature," he says on the show. "Environmental microbiology, biotech, and synthetic biology — it's now available, and we have the tools to do it. We want to be the company that goes and finds those applications and translates it from the idea and the science to the technology, and then scale it up into the engineer solution." Continue reading.


Thomas Vassiliades, CEO of BiVACOR

Led by CEO Thomas Vassiliades, a former heart surgeon, BiVACOR is based on a system of magnetic levitation. Photo courtesy

A Houston company with a breakthrough heart health tech has received a green light from the FDA.

BiVACOR, a Houston-headquartered medical device company, has received FDA approval for its Total Artificial Heart (BTAH) IDE first-in-human early feasibility study (EFS). The BTAH device itself is designed to take over all function for patients with heart failure. The BTAH is roughly the size of a human fist, which means that, while it could support an active adult male, it may also fit many women and children.

Led by CEO Thomas Vassiliades, a former heart surgeon, BiVACOR is based on a system of magnetic levitation.

“Our pump is just one moving impeller that sits in the middle of the housing where the blood is. Imagine an artificial heart — the container that has your blood — and the device spinning in the inside — basically a wheel spinning your blood to the rest of your body. The device is suspended by magnets — it's not touching anything,” Vassiliades told InnovationMap in a podcast earlier this year. Continue reading.

Veronica Wu, founder of First Bight Ventures

First Bight Venture's BioWell has received a $741,925 grant to continue supporting bioindustrial startups. Photo courtesy

A Houston-based nonprofit accelerator that works with early-stage synthetic biology startups has secured nearly $750,000 to support its mission.

First Bight Ventures' accelerator, BioWell, secured $741,925 of the $53 million doled out as a part of the "Build to Scale" Grant program that the U.S. Economic Development Administration, a division of the U.S. Department of Commerce, has established. First Bight was one of 60 organizations to receive funding.

The funding will support the BioWell's mission to establish a "vibrant bioeconomy" by helping startups scale and commercialize "through access to a unique combination of pilot bioproduction infrastructure," according to a news release from First Bight.on.

"Often times, early-stage startups gain momentum and hit important milestones, but ultimately find themselves heading toward the 'Valley of Death,' where progress is made on their enterprise, but no sufficient revenue is generated for the company's stability and longevity," Wu says in the release. "This 'Build to Scale' program's support will help offset these inevitable challenges in our bio-industrial space." Continue reading.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston engineers develop breakthrough device to advance spinal cord treatment

future of health

A team of Rice University engineers has developed an implantable probe over a hundred times smaller than the width of a hair that aims to help develop better treatments for spinal cord disease and injury.

Detailed in a recent study published in Cell Reports, the probe or sensor, known as spinalNET, is used to explore how neurons in the spinal cord process sensation and control movement, according to a statement from Rice. The research was supported by the National Institutes of Health, Rice, the California-based Salk Institute for Biological Studies, and the philanthropic Mary K. Chapman Foundation based in Oklahoma.

The soft and flexible sensor was used to record neuronal activity in freely moving mice with high resolution for multiple days. Historically, tracking this level of activity has been difficult for researchers because the spinal cord and its neurons move so much during normal activity, according to the team.

“We developed a tiny sensor, spinalNET, that records the electrical activity of spinal neurons as the subject performs normal activity without any restraint,” Yu Wu, a research scientist at Rice and lead author of the study said in a statement. “Being able to extract such knowledge is a first but important step to develop cures for millions of people suffering from spinal cord diseases.”

The team says that before now the spinal cord has been considered a "black box." But the device has already helped the team uncover new findings about the body's rhythmic motor patterns, which drive walking, breathing and chewing.

Lan Luan (from left), Yu Wu, and Chong Xie are working on the breakthrough device. Photo by Jeff Fitlow/Rice University

"Some (spinal neurons) are strongly correlated with leg movement, but surprisingly, a lot of neurons have no obvious correlation with movement,” Wu said in the statement. “This indicates that the spinal circuit controlling rhythmic movement is more complicated than we thought.”

The team said they hope to explore these findings further and aim to use the technology for additional medical purposes.

“In addition to scientific insight, we believe that as the technology evolves, it has great potential as a medical device for people with spinal cord neurological disorders and injury,” Lan Luan, an associate professor of electrical and computer engineering at Rice and a corresponding author on the study, added in the statement.

Rice researchers have developed several implantable, minimally invasive devices to address health and mental health issues.

In the spring, the university announced that the United States Department of Defense had awarded a four-year, $7.8 million grant to the Texas Heart Institute and a Rice team led by co-investigator Yaxin Wang to continue to break ground on a novel left ventricular assist device (LVAD) that could be an alternative to current devices that prevent heart transplantation.

That same month, the university shared news that Professor Jacob Robinson had published findings on minimally invasive bioelectronics for treating psychiatric conditions. The 9-millimeter device can deliver precise and programmable stimulation to the brain to help treat depression, obsessive-compulsive disorder and post-traumatic stress disorder.

Houston chemist lands $2M NIH grant for cancer treatment research

future of cellular health

A Rice University chemist has landed a $2 million grant from the National Institute of Health for his work that aims to reprogram the genetic code and explore the role certain cells play in causing diseases like cancer and neurological disorders.

The funds were awarded to Han Xiao, the Norman Hackerman-Welch Young Investigator, associate professor of chemistry, from the NIH's Maximizing Investigators’ Research Award (MIRA) program, which supports medically focused laboratories.

Xiao will use the five-year grant to develop noncanonical amino acids (ncAAs) with diverse properties to help build proteins, according to a statement from Rice. He and his team will then use the ncAAs to explore the vivo sensors for enzymes involved in posttranslational modifications (PTMs), which play a role in the development of cancers and neurological disorders. Additionally, the team will look to develop a way to detect these enzymes in living organisms in real-time rather than in a lab.

“This innovative approach could revolutionize how we understand and control cellular functions,” Xiao said in the statement.

According to Rice, these developments could have major implications for the way diseases are treated, specifically for epigenetic inhibitors that are used to treat cancer.

Xiao helped lead the charge to launch Rice's new Synthesis X Center this spring. The center, which was born out of informal meetings between Xio's lab and others from the Baylor College of Medicine’s Dan L Duncan Comprehensive Cancer Center at the Baylor College of Medicine, aims to improve cancer outcomes by turning fundamental research into clinical applications.

They will build upon annual retreats, in which investigators can share unpublished findings, and also plan to host a national conference, the first slated for this fall titled "Synthetic Innovations Towards a Cure for Cancer.”

Houston neighbor ranks as one of America's most livable small cities

mo city

Some Houston suburbs stick out from the rest thanks to their affluent residents, and now Missouri City is getting time in the spotlight, thanks to its new ranking as the No. 77 most livable small city in the country.

The tiny but mighty Houston neighbor, located less than 20 miles southwest of Houston, was among six Texas cities that earned a top-100 ranking in SmartAsset's 2024 " Most Livable Small Cities" report. It compared 281 U.S. cities with populations between 65,000 and 100,000 residents across eight metrics, such as a resident's housing costs as a percentage of household income, the city's average commute times, and the proportions of entertainment, food service, and healthcare establishments.

According to the U.S. Census Bureau, Missouri City has an estimated population of over 76,000 residents, whose median household income comes out to $97,211. SmartAsset calculated that a Missouri City household's annual housing costs only take up 19.4 percent of that household's income. Additionally, the study found only six percent of the town's population live below the poverty level.

Here's how Missouri City performed in two other metrics in the study:

  • 1.4 percent – The proportion of arts, entertainment, and recreation businesses as a percentage of all businesses
  • 29.9 minutes – Worker's average commute time

But income and housing aren't the only things that make Missouri City one of the most livable small cities in Texas. Residents benefit from its proximity from central Houston, but the town mainly prides itself on its spacious park system, playgrounds, and other recreational activities.

Missouri City, Texas

Missouri City residents have plenty of parkland to enjoy. www.missouricitytx.gov

The Missouri City Parks and Recreation Departmen meticulously maintains 21 parks spanning just over 515 acres of land, an additional 500 acres of undeveloped parkland, and 14.4 miles of trails throughout the town, according to the city's website."Small cities may offer cost benefits for residents looking to stretch their income while enjoying a comfortable – and more spacious – lifestyle," the report's author wrote. "While livability is a subjective concept that may take on different definitions for different people, some elements of a community can come close to being universally beneficial."

Missouri City is also home to Fort Bend Town Square, a massive mixed-use development at the intersection of TX 6 and the Fort Bend Parkway. It offers apartments, shopping, and restaurants, including a rumored location of Trill Burgers.

Other Houston-area cities that earned a spot in the report include

Spring (No. 227) and Baytown (No. 254).The five remaining Texas cities that were among the top 100 most livable small cities in the U.S. include Flower Mound (No. 29), Leander (No. 60), Mansfield (No. 69), Pflugerville (No. 78), and Cedar Park (No. 85).

The top 10 most livable small cities in the U.S. are:

  • No. 1 – Troy, Michigan
  • No. 2 – Rochester Hills, Michigan
  • No. 3 – Eau Claire, Wisconsin
  • No. 4 – Franklin, Tennessee
  • No. 5 – Redmond, Washington
  • No. 6 – Appleton, Wisconsin
  • No. 7 – Apex, North Carolina
  • No. 8 – Plymouth, Minnesota
  • No. 9 – Livonia, Michigan
  • No. 10 – Oshkosh, Wisconsin

The report examined data from the U.S. Census Bureau's 2022 1-year American Community Survey and the 2021 County Business Patterns Survey to determine its rankings.The report and its methodology can be found on

smartasset.com

.

------

This article originally ran on CultureMap.