Houston-based Avance Biosciences' new Next-Generation Sequencing Center of Excellence will pursue breakthroughs in biologics, cell therapy and gene therapy. Photo via Getty Images.

Houston-based Avance Biosciences has launched the Next-Generation Sequencing Center of Excellence, designed to enhance the company’s sequencing capabilities for drug development. Specifically, the facility at the company’s main campus in Northwest Houston will pursue breakthroughs in biologics, cell therapy and gene therapy.

In the drug industry, sequencing refers to studying nucleotides in DNA and RNA molecules. Nucleotides are the building blocks of DNA and RNA.

“This is a major milestone for Avance Biosciences as we continue to support the evolving needs of biologics and cell and gene therapy developers,” Xuening “James” Huang, co-founder, CEO and chief technology officer of Avance, said in a news release. “By consolidating state-of-the-art sequencing platforms and scientific talent, we’ve created a highly capable organization ready to solve complex genomic challenges with precision and compliance.”

In 2013, Avance rolled out next-generation sequencing (NGS) that complies with federal guidelines. Since then, Avance “has remained at the forefront of regulated sequencing services,” the company said. “The launch of the (new center) strengthens the company’s ability to deliver accurate, reproducible, and regulatory-aligned sequencing data across a wide array of therapeutic modalities.”

Cal Froberg, senior vice president of sales and marketing at Avance, said pharmaceutical and biotech clients trust the company’s technical capabilities and regulatory compliance.

“With the ever-changing global landscape and increasing scrutiny around international sample shipments, conducting advanced, cost-effective NGS testing domestically is now more feasible than ever,” Froberg said. “Our clients have confidence that their samples will remain in the U.S.”

Avance, founded in 2010, plans to hold an open house at the new facility in September to showcase its capabilities, technology, talent, and services. The company’s services include sequencing, molecular biology, cell-based testing, and bioanalytical testing.
March Biosciences is testing its MB-105 cell therapy in a Phase 2 clinical trial for people with difficult-to-treat cancer. Photo via march.bio

Houston cell therapy company launches second-phase clinical trial

fighting cancer

A Houston cell therapy company has dosed its first patient in a Phase 2 clinical trial. March Biosciences is testing the efficacy of MB-105, a CD5-targeted CAR-T cell therapy for patients with relapsed or refractory CD5-positive T-cell lymphoma.

Last year, InnovationMap reported that March Biosciences had closed its series A with a $28.4 million raise. Now, the company, co-founded by Sarah Hein, Max Mamonkin and Malcolm Brenner, is ready to enroll a total of 46 patients in its study of people with difficult-to-treat cancer.

The trial will be conducted at cancer centers around the United States, but the first dose took place locally, at The University of Texas MD Anderson Cancer Center. Dr. Swaminathan P. Iyer, a professor in the department of lymphoma/myeloma at MD Anderson, is leading the trial.

“This represents a significant milestone in advancing MB-105 as a potential treatment option for patients with T-cell lymphoma who currently face extremely limited therapeutic choices,” Hein, who serves as CEO, says. “CAR-T therapies have revolutionized the treatment of B-cell lymphomas and leukemias but have not successfully addressed the rarer T-cell lymphomas and leukemias. We are optimistic that this larger trial will further validate MB-105's potential to address the critical unmet needs of these patients and look forward to reporting our first clinical readouts.”

The Phase 1 trial showed promise for MB-105 in terms of both safety and efficacy. That means that potentially concerning side effects, including neurological events and cytokine release above grade 3, were not observed. Those results were published last year, noting lasting remissions.

In January 2025, MB-105 won an orphan drug designation from the FDA. That results in seven years of market exclusivity if the drug is approved, as well as development incentives along the way.

The trial is enrolling its single-arm, two-stage study on ClinicalTrials.gov. For patients with stubborn blood cancers, the drug is providing new hope.

March Biosciences' oversubscribed raise brought in $28.4 million of financing with Mission BioCapital and 4BIO Capital leading the pack of investors. Photo via Getty Images

Clinical-stage Houston cell therapy company closes $28.4M oversubscribed series A

cha-ching

An emerging biotech company in Houston has closed its series A with outsized success.

March Biosciences' oversubscribed raise brought in $28.4 million of financing with Mission BioCapital and 4BIO Capital leading the pack of investors. The company has now raised more than $51 million in total.

Last year, March Biosciences announced its strategic alliance with CTMC (Cell Therapy Manufacturing Center), a joint venture between MD Anderson Cancer Center and National Resilience. CEO Sarah Hein met her co-founder, Max Mamonkin, at the TMC Accelerator for Cancer Therapeutics. Along with fellow co-founder Malcolm Brenner, March Biosciences launched from the Center for Cell and Gene Therapy (Baylor College of Medicine, Houston Methodist Hospital and Texas Children’s Hospital). Its goal is to fight cancers that have been unresponsive to existing immunotherapies using its lead asset, MB-105.

An autologous CD5-targeted CAR-T cell therapy, MB-105 is currently in phase-1 trials in patients with refractory T-cell lymphoma and leukemia. The treatment is showing signs of being both safe and effective, meriting a phase-2 trial that will begin early next year. The funds raised from the series A will help to finance the Phase 2 clinical development of MB-105 to expand on the existing data with optimized manufacturing processes.

“This oversubscribed financing enables us to advance our first-in-class CAR-T therapy, MB-105, into a Phase 2 trial for T-cell lymphoma – an indication with an exceptionally poor prognosis and few treatment options,” says Hein. “With the support and confidence of our investors, we are not only advancing our lead program but also expanding our pipeline, underscoring our commitment to delivering best-in-class therapies to patients that can change the treatment paradigm for these challenging cancers.”

But that’s not the only exciting news that Hein and her associates have to report. March Biosciences has recently partnered with cell therapy venture studio, Volnay Therapeutics. Led by highly experienced cell therapy development veterans, the March Biosciences team will work to develop a scalable manufacturing process for MB-105 that will lead to commercialization. Volnay co-founder and CEO Stefan Wildt, who held key R&D leadership positions in cell and gene therapy units at Novartis and Takeda, has also joined the board of March Biosciences. The board of directors is also welcoming Cassidy Blundell of Mission BioCapital and Owen Smith of 4BIO Capital.

“The team at March Biosciences is leveraging powerful science and promising clinical data to tackle cancers with significant unmet need,” says Blundell, a partner at Mission BioCapital. “We're excited to support their journey and believe their focused approach with MB-105 could lead to significant breakthroughs in the CAR-T space.”

The Houston-born company, which is a finalist for the 2024 Houston Innovation Awards, continues to accelerate quickly, in part thanks to its home base. After all, existing local investors like TMC Venture Fund also participated in the new raise. As Hein said last year, “Working with partners here in Houston, we have all the pieces and the community rises to the occasion to support you.”

At Rezvani Lab in MD Anderson Cancer Center, scientists train immune cells to fight cancer. Photo via Getty Images

Unique cell therapy developed in Houston doses inaugural patient

cancer-fighting innovation

Replay, a genome-writing company headquartered in San Diego, has announced that its first patient has been dosed with an engineered T-Cell Receptor Natural Killer (TCR-NK) cell therapy for relapsed or refractory multiple myeloma.

What does that have to do with Houston? Last year, Replay incorporated a first-in-class engineered TCR-NK cell therapy product company, Syena, using technology developed by Dr. Katy Rezvani at The University of Texas MD Anderson Cancer Center.

Rezvani, a professor of stem cell transplantation and cellular therapy, is the force behind MD Anderson’s Rezvani Lab, a group of 55 people, all focused on harnessing natural killer cells to combat cancer.

“Everybody thinks that the immune system is fighting viruses and infections, but I feel our immune system is capable of recognizing and killing abnormal cells or cells that are becoming cancerous and they're very powerful. This whole field of immunotherapy really refers to the power of the immune system,” Rezvani tells InnovationMap.

Dr. Katy Rezvani is a professor of stem cell transplantation and cellular therapy and the force behind MD Anderson’s Rezvani Lab, which is focused on harnessing natural killer cells to combat cancer. Photo via mdanderson.org

At Rezvani Lab, scientists train immune cells to fight cancer. While cancer drugs like chemotherapy are still the norm, immunotherapy has gained ground, led by Houston research, including the work of Nobel laureate Jim Allison. The harnessed cells are taught to attack cancerous cells, while ignoring healthy ones, says Rezvani. “We’re turning them into heat-seeking missiles,” she explains.

However, there must be a beacon to signal to those “missiles” that there is something to attack. Much of the field has used chimeric antigen receptors (CARs) to achieve that. But they have limitations.

“CARs can only recognize beacons that sit on the surface of the tumor cells,” Rezvani says. “So basically, it's like the tumor cell has to have a hat on it.”

She says that this usually means that the targets that send off a signal are relatively limited, mostly blood cancers. Using T cell receptors (TCRs) may be able to open up the field to look beyond the “hat.” In other words, TCRs can peer inside cells and see what differentiates a tumor cell from healthy cells. With Replay, Rezvani Lab has developed a first-in-class and first-in-human approach of engineering natural killer cells to express the TCR.

There are six different FDA-approved products that use CAR-T cells, but Rezvani says that her TCR-NK-based technology, though still in its early phases, shows great promise.

“We could use it to target many different types of antigens, many different types of cancers, especially solid tumors," she explains. "These cell therapies have a lot of potential — we call them living drugs… It's not like chemotherapy where you have to keep giving different multiple cycles, these cells are very long lived.”

Rezvani, who started her career in London, says that Houston has been instrumental in the success of her lab.

“There are so many opportunities because we have access to some of the most brilliant minds in research,” Rezvani says. “We have some of the best clinicians in the world. We have patients who come to us who are willing to participate in our clinical trials — really put their trust in us — and are committed and want to participate in these clinical studies.”

The role of funding also plays a part. As Rezvani admitted, bringing a new technology to the market is expensive. The philanthropists who help support trials can’t be forgotten among Houston’s finest.

Whether or not Syena produces the first TCR-NK product on the market, Rezvani is enthusiastic and hopeful for the future of her patients.

“The field of immunotherapy is really expanding, the field of cell therapies is expanding, and there is so much promise,” she says. “The promise of AI, big data, all the engineering tools that we have available, the promise of CRISPR — all of that is going to bring what we've learned from biology, from basic science, together to help us make the cell therapies that are going to be safe and and also very effective for our patients.”

Early-stage cell therapy startup March Biosciences has partnered with CTMC. Photo via march.bio

Cancer-fighting startup partners with Houston cell therapy accelerator

marching on

When it came time to name their cell therapy startup, Houston life science innovators simply had to look to their calendar.

“I would argue that March is the best month in Houston,” Sarah Hein tells InnovationMap. “We started talking about putting this company together during COVID, so we were outside a lot. And we actually got together in March.”

That’s why the CEO and her co-founders Max Mamonkin and Malcolm Brenner decided to name their company March Biosciences.

It's a fresh, unstuffy name for a startup that has an innovative take on cancer immunotherapy. Their lead asset is an advanced cellular therapy known as MB-105, an autologous CD5 CAR T cell therapy. For patients with T-cell lymphoma and leukemia who have failed all currently available lines of therapy, the prognosis is understandably extremely poor. But in a phase one study, MB-105 has been proven to safely treat those patients. The phase two study is expected to begin in the first half of 2024.

Hein met Mamonkin at the TMC Accelerator for Cancer Therapeutics (ACT), at which the alumna of Resonant Therapeutics and Courier Therapeutics was an entrepreneur in residence.

“It's a perfect example of the opportunities here in Houston where you can go from bench to bedside, essentially, in the same institution. And Baylor has been particularly good at that because of the Center for Cell and Gene Therapy,” says Hein.

The serial entrepreneur first came to Houston as a PhD student in molecular and cellular biology at Baylor College of Medicine, but during her studies she became excited by the startup ecosystem in her new hometown. After earning her degree, she became a venture fellow at the Mercury Fund. Her experience in both science and business made her an ideal candidate to take March Biosciences to the next level.

In September, the company announced that it formed a strategic alliance with CTMC (Cell Therapy Manufacturing Center), a joint venture between MD Anderson Cancer Center and National Resilience.

“Our unique risk-sharing model allows us to collaborate with organizations like March Biosciences to accelerate the development and manufacture of innovative cell therapies, like MB-105, and bring them into the clinic with a consistent and scalable manufacturing process,” said CTMC’s CEO, Jason Bock in a press release.

The partnership “has allowed us to move really quickly,” Hein says.

That’s because what CTMC does uniquely well is take early stage companies like March Biosciences and advance them to a state that’s ready for manufacturing in a short time, around 18 months, says Hein.

According to Hein, March Biosciences’ success is a testament to Houston and its world-class medical center.

“It’s a great example of the opportunities you see here in Houston, where we have a technology that was developed by brilliant scientists here in Houston and we can pull together the resources that we need to take it to the next level,” Hein says. "Working with partners here in Houston, we have all the pieces and the community rises to the occasion to support you.”

CellChorus, a biotech startup operating out of the University of Houston Technology Bridge, has secured fresh funding. Photo via Getty Images

Houston biotech startup secures $2.3M grant

cha-ching

They say it’s all in the timing. For CellChorus, it’s all in the TIMING. That’s Time-lapse Imaging Microscopy In Nanowell Grids. TIMING is a visual AI program that evaluates cell activation, killing and movement, which allows scientists to better understand how cells function.

The technology is important to the development of novel therapies in the realms of oncology, infectious diseases, and countless other disorders and diseases. By allowing scientists to observe those maladies at their roots, it will enable them to create, and ultimately deliver new medications and other therapies faster, at lower cost, and with a higher success rate.

CellChorus is a spinoff of the Single Cell Lab at the University of Houston. Part of UH’s Technology Bridge, CEO Daniel Meyer connected with co-founder and leader of Single Cell Lab, Navin Varadarajan, through co-founder Laurence Cooper.

“The company had been established, but there were limited operations,” recalls Meyer during a phone call with InnovationMap.

That was the fall of 2020. Now, the team has just announced a $2.3 million SBIR (Small Business Innovation Research) Fast-Track grant from the National Institute of General Medical Sciences.

“This funding will support development of a product offering that builds on the success of our early access laboratory,” Cooper said in a press release. “As the next frontier of cellular analysis, dynamic single-cell analysis will increase the impact that immunotherapies have in improving the lives of patients.”

Meyer is based in the Bay Area, but the rest of the team is in Houston. Meyer has a proven track record as an investor and early stage entrepreneur in life sciences companies, including work as COO of Genospace, which was acquired by HCA Healthcare.

Meyer says that what attracted him to CellChorus was a combination of a clear need for the technology and the fact that it was “very well validated.“

“Developers of immunotherapies need better functional data earlier so that they can develop and deliver better therapies,” he explains.

Another aspect of its appeal was the fact that more than 10 publications featured data from the TIMING platform.

“We’ve had both large and small biopharmas publish data,” says Meyer. “That’s important as well because it shows there’s applicability in both nonprofit and for-profit research.”

Though Meyer himself doesn’t currently live in Houston, he recognizes its importance to CellChorus. He says that it can be difficult for an early stage company to find appropriate lab space, so Technology Bridge was of exceptional importance for CellChorus. Since opening the lab a year and a half ago, Varadarajan and his team have been busy.

“Example projects we have completed include understanding mechanism of action for cell therapy products, selecting lead candidates for T cell engagers, identifying biomarkers of response to cell therapies, and quantifying potency and viability for cell therapy manufacturing technologies,” says Meyer.

And now, CellChorus is collaborating with leaders in the industry.

“These include top-25 biopharmaceutical companies and promising venture-backed biotechnology companies, as well as leading not-for-profit research institutions,” says Meyer in a press release. It’s clear that the TIMING is right for CellChorus to excel.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Intuitive Machines to buy satellite maker Lanteris for $800M

space deal

Houston-based aerospace company Intuitive Machines has agreed to buy satellite manufacturer Lanteris Space Systems for $800 million from private equity firm Advent International.

Intuitive Machines co-founder, president and CEO Steve Altemus said the combined revenue of his company and Palo Alto, California-based Lanteris exceeded $850 million as of Sept. 30, and their backlog of orders totaled $920 million.

Until recently, Lanteris operated as Maxar Space Systems. Its origins date back to 1957.

The deal—comprising $450 million in cash and $350 million in Class A shares of Intuitive Machines stock—is expected to close in the first quarter of 2026.

The acquisition “marks the moment Intuitive Machines transitions from a lunar company to a multi-domain space [company], setting the pace for how the industry’s next generation will operate,” Altemus said.

Altemus said the acquisition would enable Intuitive Machines to better compete for Earth orbit, lunar, Mars and deep space projects. Among the opportunities that would open up thanks to the Lanteris deal are the proposed Golden Dome missile defense system and a large lunar lander capable of carrying astronauts, he said.

“The new Intuitive Machines will combine rapid innovation and precision spacecraft production to meet the growing demand for responsive, high-reliability space infrastructure and services,” Altemus said.

Intuitive Machines, founded in 2013, develops lunar landers and provides aerospace services. In 2024, it became the first U.S. company to land a spacecraft on the moon in half a century.

Altemus said Intuitive Machines is already building three satellites for NASA’s near-space network, and it might upsize two more satellites now that it plans to buy Lanteris.

Aside from satellites, Lanteris is developing the power and propulsion element for NASA’s Gateway, a lunar orbiting command module that will support Artemis missions and deep space exploration.


Lanteris was a division of Maxar Technologies, which Advent and minority investor British Columbia Investment Management took private in a 2023 deal valued at $6.4 billion

.

Meet 6 mentors who are helping the Houston startup scene flourish

meet the finalists

Few founders launch successful startups alone — experienced and insightful mentors often play an integral role in helping the business and its founders thrive.

The Houston startup community is home to many mentors who are willing to lend an ear and share advice to help entrepreneurs meet their goals.

The Mentor of the Year category in our 2025 Houston Innovation Awards will honor an individual like this, who dedicates their time and expertise to guide and support budding entrepreneurs. The award is presented by Houston City College Northwest.

Below, meet the six finalists for the 2025 award. They support promising startups in the medical tech, digital health, clean energy and hardware sectors.

Then, join us at the Houston Innovation Awards this Thursday, Nov. 13 at Greentown Labs, when the winner will be unveiled. The event is just days away, so secure your seats now.

Anil Shetty, InformAI

Anil Shetty serves as president and chief medical officer for biotech company Ferronova and chief innovation officer for InformAI. He's mentored numerous medical device and digital health companies at seed or Series A, including Pathex, Neurostasis, Vivifi Medical and many others. He mentors through organizations like Capital Factory, TMC Biodesign, UT Venture Mentoring, UTMB Innovation and Rice's Global Medical Innovation program.

"Being a mentor means empowering early-stage innovators to shape, test, and refine their ideas with clarity and purpose," Shetty says. "I’m driven by the opportunity to help them think strategically and pivot early before resources are wasted. At this critical stage, most founders lack the financial means to bring on seasoned experts and often haven’t yet gained real-world exposure. Mentorship allows me to fill that gap, offering guidance that accelerates their learning curve and increases the chances of meaningful, sustainable impact."

Jason Ethier, EnergyTech Nexus

Jason Ethier is the founding partner of EnergyTech Nexus, through which he has mentored numerous startups and Innovation Awards finalists, including Geokiln, Energy AI Solutions, Capwell Services and Corrolytics. He founded Dynamo Micropower in 2011 and served as its president and CEO. He later co-founded Greentown Labs in Massachusetts and helped bring the accelerator to Houston.

"Being a mentor means using my experience to help founders see a clearer path to success. I’ve spent years navigating the ups and downs of building companies, struggling with cash flow, and making all the mistakes; mentoring gives me the chance to share those lessons and show entrepreneurs the shortcuts I wish I’d known earlier," Ethier says. "At Energytech Nexus, that role goes beyond just helping individual founders — it’s about creating a flywheel effect for Houston’s entire innovation ecosystem."

Jeremy Pitts, Activate Houston

Jeremy Pitts serves as managing director of Activate Houston, which launched in Houston last year. He was one of the founders of Greentown Labs in the Boston area and served in a leadership role for the organization between 2011 and 2015. Through Activate, he has mentored numerous impactful startups and Innovation Awards finalists, including Solidec, Coflux Purification, Bairitone Health, Newfound Materials, Deep Anchor Solutions and others.

"Being a mentor to me is very much about supporting the person in whatever they need. Oftentimes that means supporting the business—providing guidance and advice, feedback, introductions, etc," But just as important is recognizing the person and helping them with whatever challenges they are going through ... Sometimes they need a hype man to tell them how awesome they are and that they can go do whatever hard thing they need to do. Sometimes they just need an empathetic listener who can relate to how hard these things are. Being there for the person and supporting them on their journey is key to my mentorship style."

Joe Alapat, Liongard

Joe Alapat founded and serves as chief strategy officer at Houston software company Liongard and chief information officer at Empact IT, which he also owns. He mentors through Founder Fridays Houston Group, Software Day by Mercury Fund, SUPERGirls SHINE Foundation, Cup of Joey and at the Ion. He's worked with founders of FlowCare, STEAM OnDemand, Lokum and many other early stage startups.

"Being a mentor to me means unleashing an individual’s 10x—their purpose, their ikigai (a Japanese concept that speaks to a person’s reason for being)," Alapat says. "Mentoring founders in the Houston community of early stage, high-growth startups is an honor for me. I get to live vicariously through a founder’s vision of the future. Once they show me that compelling vision, I’m drawn to bring the future forward with them so the vision becomes reality with a sense of urgency."

Neal Dikeman, Energy Transition Ventures

Neal Dikeman serves as partner at early stage venture fund Energy Transition Ventures, executive in residence at Greentown Labs, and offices in and supports Rice Nexus at the Ion. He mentors startups, like Geokiln, personally. He also mentored Helix Earth through Greentown Labs. The company went on to win in the Smart Cities, Transportation & Sustainability contest at SXSW earlier this year. Dikeman has helped launch several successful startups himself, most recently serving on the board of directors for Resilient Power Systems, which was acquired by Eaton Corp for $150 million.

"Founders have to find their own path, and most founders need a safe space where they can discuss hard truths outside of being 'on' in sales mode with their team or board or investors, to let them be able to work on their business, not just in it," Dikeman says.

Nisha Desai, Intention

Nisha Desai serves as CEO of investment firm Intention and mentors through Greentown Labs, TEX-E, Open Minds, the Rice Alliance Clean Energy Accelerator, Avatar Innovations and The Greenhouse. She currently works with founders from Solidec, Deep Anchor Solutions, CLS Wind and several other local startups, several of which have been nominated for Innovation Awards this year. She's served a board member for Greentown Labs since 2021.

"When I first started mentoring, I viewed my role as someone who was supposed to prevent the founder from making bad decisions. Now, I see my role as a mentor as enabling the founder to develop their own decision-making capability," Desai says. "Sometimes that means giving them the space to make decisions that might be good, that might be bad, but that they can be accountable for. At the end of the day, being a mentor is like being granted a place on the founder's leadership development journey, and it's a privilege I'm grateful for."

---

The Houston Innovation Awards program is sponsored by Houston City College Northwest, Houston Powder Coaters, FLIGHT by Yuengling, and more to be announced soon. For sponsorship opportunities, please contact sales@innovationmap.com.

Rice, Houston Methodist developing soft 'sleep cap' for brain health research

Researchers and scientists at Rice University and Houston Methodist are developing a “sleep cap” that aims to protect the brain against dementia and other similar diseases by measuring and improving deep sleep.

The project is a collaboration between Rice University engineering professors Daniel Preston, Vanessa Sanchez and Behnaam Aazhang; and Houston Methodist neurologist Dr. Timea Hodics and Dr. Gavin Britz, director of the Houston Methodist Neurological Institute and chairman of the Department of Neurosurgery.

According to Rice, deep sleep is essential for clearing waste products from the brain and nightly “cleaning cycles” help remove toxic proteins. These toxic proteins, like amyloids, can accumulate during the day and are linked to Alzheimer’s disease and other neurological issues.

Aazhang, director of the Rice Neuroengineering Initiative, and his team are building a system that not only tracks the brain’s clearing process but can also stimulate it, improving natural mechanisms that protect against neurodegeneration.

Earlier proof-of-concept versions of the caps successfully demonstrated the promise of this approach; however, they were rigid and uncomfortable for sleep.

Preston and Sanchez will work to transform the design of the cap into a soft, lightweight, textile-based version to make sleep easier, while also allowing the caps to be customizable and tailored for each patient.

“One of the areas of expertise we have here at Rice is designing wearable devices from soft and flexible materials,” Preston, an assistant professor of mechanical engineering, said in a news release. “We’ve already shown this concept works in rigid device prototypes. Now we’re building a soft, breathable cap that people can comfortably wear while they sleep.”

Additionally, the research team is pursuing ways to adapt their technology to measure neuroinflammation and stimulate the brain’s natural plasticity. Neuroinflammation, or swelling in the brain, can be caused by injury, stroke, disease or lifestyle factors and is increasingly recognized as a driver of neurodegeneration, according to Rice.

“Our brain has an incredible ability to rewire itself,” Aazhang added in the release. “If we can harness that through technology, we can open new doors for treating not just dementia but also traumatic brain injury, stroke, Parkinson’s disease and more.”

The project represents Rice’s broader commitment to brain health research and its support for the Dementia Prevention Research Institute of Texas (DPRIT), which passed voter approval last week. The university also recently launched its Rice Brain Institute.

As part of the project, Houston Methodist will provide access to clinicians and patients for early trials, which include studies on patients who have suffered traumatic brain injury and stroke.

“We have entered an era in neuroscience that will result in transformational cures in diseases of the brain and spinal cord,” Britz said in the release. “DPRIT could make Texas the hub of these discoveries.”