At Rezvani Lab in MD Anderson Cancer Center, scientists train immune cells to fight cancer. Photo via Getty Images

Replay, a genome-writing company headquartered in San Diego, has announced that its first patient has been dosed with an engineered T-Cell Receptor Natural Killer (TCR-NK) cell therapy for relapsed or refractory multiple myeloma.

What does that have to do with Houston? Last year, Replay incorporated a first-in-class engineered TCR-NK cell therapy product company, Syena, using technology developed by Dr. Katy Rezvani at The University of Texas MD Anderson Cancer Center.

Rezvani, a professor of stem cell transplantation and cellular therapy, is the force behind MD Anderson’s Rezvani Lab, a group of 55 people, all focused on harnessing natural killer cells to combat cancer.

“Everybody thinks that the immune system is fighting viruses and infections, but I feel our immune system is capable of recognizing and killing abnormal cells or cells that are becoming cancerous and they're very powerful. This whole field of immunotherapy really refers to the power of the immune system,” Rezvani tells InnovationMap.

Dr. Katy Rezvani is a professor of stem cell transplantation and cellular therapy and the force behind MD Anderson’s Rezvani Lab, which is focused on harnessing natural killer cells to combat cancer. Photo via mdanderson.org

At Rezvani Lab, scientists train immune cells to fight cancer. While cancer drugs like chemotherapy are still the norm, immunotherapy has gained ground, led by Houston research, including the work of Nobel laureate Jim Allison. The harnessed cells are taught to attack cancerous cells, while ignoring healthy ones, says Rezvani. “We’re turning them into heat-seeking missiles,” she explains.

However, there must be a beacon to signal to those “missiles” that there is something to attack. Much of the field has used chimeric antigen receptors (CARs) to achieve that. But they have limitations.

“CARs can only recognize beacons that sit on the surface of the tumor cells,” Rezvani says. “So basically, it's like the tumor cell has to have a hat on it.”

She says that this usually means that the targets that send off a signal are relatively limited, mostly blood cancers. Using T cell receptors (TCRs) may be able to open up the field to look beyond the “hat.” In other words, TCRs can peer inside cells and see what differentiates a tumor cell from healthy cells. With Replay, Rezvani Lab has developed a first-in-class and first-in-human approach of engineering natural killer cells to express the TCR.

There are six different FDA-approved products that use CAR-T cells, but Rezvani says that her TCR-NK-based technology, though still in its early phases, shows great promise.

“We could use it to target many different types of antigens, many different types of cancers, especially solid tumors," she explains. "These cell therapies have a lot of potential — we call them living drugs… It's not like chemotherapy where you have to keep giving different multiple cycles, these cells are very long lived.”

Rezvani, who started her career in London, says that Houston has been instrumental in the success of her lab.

“There are so many opportunities because we have access to some of the most brilliant minds in research,” Rezvani says. “We have some of the best clinicians in the world. We have patients who come to us who are willing to participate in our clinical trials — really put their trust in us — and are committed and want to participate in these clinical studies.”

The role of funding also plays a part. As Rezvani admitted, bringing a new technology to the market is expensive. The philanthropists who help support trials can’t be forgotten among Houston’s finest.

Whether or not Syena produces the first TCR-NK product on the market, Rezvani is enthusiastic and hopeful for the future of her patients.

“The field of immunotherapy is really expanding, the field of cell therapies is expanding, and there is so much promise,” she says. “The promise of AI, big data, all the engineering tools that we have available, the promise of CRISPR — all of that is going to bring what we've learned from biology, from basic science, together to help us make the cell therapies that are going to be safe and and also very effective for our patients.”

Early-stage cell therapy startup March Biosciences has partnered with CTMC. Photo via march.bio

Cancer-fighting startup partners with Houston cell therapy accelerator

marching on

When it came time to name their cell therapy startup, Houston life science innovators simply had to look to their calendar.

“I would argue that March is the best month in Houston,” Sarah Hein tells InnovationMap. “We started talking about putting this company together during COVID, so we were outside a lot. And we actually got together in March.”

That’s why the CEO and her co-founders Max Mamonkin and Malcolm Brenner decided to name their company March Biosciences.

It's a fresh, unstuffy name for a startup that has an innovative take on cancer immunotherapy. Their lead asset is an advanced cellular therapy known as MB-105, an autologous CD5 CAR T cell therapy. For patients with T-cell lymphoma and leukemia who have failed all currently available lines of therapy, the prognosis is understandably extremely poor. But in a phase one study, MB-105 has been proven to safely treat those patients. The phase two study is expected to begin in the first half of 2024.

Hein met Mamonkin at the TMC Accelerator for Cancer Therapeutics (ACT), at which the alumna of Resonant Therapeutics and Courier Therapeutics was an entrepreneur in residence.

“It's a perfect example of the opportunities here in Houston where you can go from bench to bedside, essentially, in the same institution. And Baylor has been particularly good at that because of the Center for Cell and Gene Therapy,” says Hein.

The serial entrepreneur first came to Houston as a PhD student in molecular and cellular biology at Baylor College of Medicine, but during her studies she became excited by the startup ecosystem in her new hometown. After earning her degree, she became a venture fellow at the Mercury Fund. Her experience in both science and business made her an ideal candidate to take March Biosciences to the next level.

In September, the company announced that it formed a strategic alliance with CTMC (Cell Therapy Manufacturing Center), a joint venture between MD Anderson Cancer Center and National Resilience.

“Our unique risk-sharing model allows us to collaborate with organizations like March Biosciences to accelerate the development and manufacture of innovative cell therapies, like MB-105, and bring them into the clinic with a consistent and scalable manufacturing process,” said CTMC’s CEO, Jason Bock in a press release.

The partnership “has allowed us to move really quickly,” Hein says.

That’s because what CTMC does uniquely well is take early stage companies like March Biosciences and advance them to a state that’s ready for manufacturing in a short time, around 18 months, says Hein.

According to Hein, March Biosciences’ success is a testament to Houston and its world-class medical center.

“It’s a great example of the opportunities you see here in Houston, where we have a technology that was developed by brilliant scientists here in Houston and we can pull together the resources that we need to take it to the next level,” Hein says. "Working with partners here in Houston, we have all the pieces and the community rises to the occasion to support you.”

CellChorus, a biotech startup operating out of the University of Houston Technology Bridge, has secured fresh funding. Photo via Getty Images

Houston biotech startup secures $2.3M grant

cha-ching

They say it’s all in the timing. For CellChorus, it’s all in the TIMING. That’s Time-lapse Imaging Microscopy In Nanowell Grids. TIMING is a visual AI program that evaluates cell activation, killing and movement, which allows scientists to better understand how cells function.

The technology is important to the development of novel therapies in the realms of oncology, infectious diseases, and countless other disorders and diseases. By allowing scientists to observe those maladies at their roots, it will enable them to create, and ultimately deliver new medications and other therapies faster, at lower cost, and with a higher success rate.

CellChorus is a spinoff of the Single Cell Lab at the University of Houston. Part of UH’s Technology Bridge, CEO Daniel Meyer connected with co-founder and leader of Single Cell Lab, Navin Varadarajan, through co-founder Laurence Cooper.

“The company had been established, but there were limited operations,” recalls Meyer during a phone call with InnovationMap.

That was the fall of 2020. Now, the team has just announced a $2.3 million SBIR (Small Business Innovation Research) Fast-Track grant from the National Institute of General Medical Sciences.

“This funding will support development of a product offering that builds on the success of our early access laboratory,” Cooper said in a press release. “As the next frontier of cellular analysis, dynamic single-cell analysis will increase the impact that immunotherapies have in improving the lives of patients.”

Meyer is based in the Bay Area, but the rest of the team is in Houston. Meyer has a proven track record as an investor and early stage entrepreneur in life sciences companies, including work as COO of Genospace, which was acquired by HCA Healthcare.

Meyer says that what attracted him to CellChorus was a combination of a clear need for the technology and the fact that it was “very well validated.“

“Developers of immunotherapies need better functional data earlier so that they can develop and deliver better therapies,” he explains.

Another aspect of its appeal was the fact that more than 10 publications featured data from the TIMING platform.

“We’ve had both large and small biopharmas publish data,” says Meyer. “That’s important as well because it shows there’s applicability in both nonprofit and for-profit research.”

Though Meyer himself doesn’t currently live in Houston, he recognizes its importance to CellChorus. He says that it can be difficult for an early stage company to find appropriate lab space, so Technology Bridge was of exceptional importance for CellChorus. Since opening the lab a year and a half ago, Varadarajan and his team have been busy.

“Example projects we have completed include understanding mechanism of action for cell therapy products, selecting lead candidates for T cell engagers, identifying biomarkers of response to cell therapies, and quantifying potency and viability for cell therapy manufacturing technologies,” says Meyer.

And now, CellChorus is collaborating with leaders in the industry.

“These include top-25 biopharmaceutical companies and promising venture-backed biotechnology companies, as well as leading not-for-profit research institutions,” says Meyer in a press release. It’s clear that the TIMING is right for CellChorus to excel.

Jason Bock, founder and CEO of the Cell Therapy Manufacturing Center, joins the Houston Innovators Podcast to explain the complicated — yet necessary — process of scaling cell therapies. Photo courtesy

Houston innovator aims to scale cancer-curing cell therapies

HOUSTON INNOVATORS PODCAST EPISODE 185

It's almost unreal what can be done with therapeutics today, especially in the specialty of cell therapy.

"It feels like science fiction," says Jason Bock, founder and CEO of the Cell Therapy Manufacturing Center, or CTMC, a joint venture between National Resilience and MD Anderson Cancer Center.

Cell therapy is essentially personalized medicine, he explains. The process includes taking out a patient’s own immune cells, identifying specifically the T-cells, and engineer them to have them target cancer before expanding them and reintroducing them to the patient.

“The supply chain begins with the patient,” Bock explains on the Houston Innovators Podcast. “If the patient is going to be an integral part of the supply chain, one way to simplify your supply chain is to locate your manufacturing very close to where your patients are.”

That's where CTMC, located in the heart of the Texas Medical Center, comes in. Bock moved to Houston from the East Coast four years to stand up the program at MD Anderson. The founding thesis was to work with faculty members who have interesting ideas for biologics or cell therapies, help them industrialize them, and then bring them into the MD Anderson clinic to evaluate in patients.

Last year, the entity spun out into a joint venture structure with National Resilience, a company that was founded amid the pandemic to build resilience in the nation for complex biologics manufacturing — like vaccines, for instance — in order to expedite the process of getting these treatments to patients.

With access to patients established, how do you address scalability of this treatment in a field that's so customized?

While it might sound like a challenge to scale personalized medicine — it's a worthwhile challenge. Bock says that even though cell therapy is in its early stages still — the first treatment was approved by the FDA just five years ago — early studies have shown patients, who essentially have no other treatment options, can see life-saving results in as little as one treatment.

"We see in a large group of patients — 30 to 50 percent of patients — are cured with one dose," he says on the show.

CTMC has a 60,000-square-foot space two blocks away from MD Anderson. This critical lab space with 14 clean rooms was made available after its previous biotech tenant moved out. The setup can support up to 140 people, and the organization has grown to 80 people over the past few years.

Bock says CTMC is an engine for cell therapy research — one that can take a therapeutic from research to the clinic in about one to two years. Every year, he says CTMC can roll three to five therapeutics into the clinic phase.

And, Houston's an ideal place to do that.

"Houston has a chance to play a role in all aspects of cell therapy," he says, from discovery to the clinical side. "Some really interesting cell therapies that are in development were discovered here in Houston."

Bock shares more on how the impact CTMC is making on cell therapy advancement on the podcast. Listen to the interview below — or wherever you stream your podcasts — and subscribe for weekly episodes.


You can now hop online and invest in this promising cell therapy startup. Photo via Getty Images

Houston biopharma company launches equity crowdfunding campaign

money moves

A clinical-stage company headquartered in Houston has opened an online funding campaign.

FibroBiologics, which is developing fibroblast cell-based therapeutics for chronic diseases, launched a campaign with equity crowdfunding platform StartEngine. The platform lets anyone — regardless of their net worth or income level — to invest in securities issued by startups.

The funding, according to a press release, will be used to support ongoing operations of Fibrobiologics and advance its clinical programs in multiple sclerosis, degenerative disc disease, wound care, extension of life, and cancer.

"We're excited to partner with StartEngine on this campaign. StartEngine has over 600,000 investors as part of their community and has raised over half a billion dollars for its clients," says FibroBiologics' Founder and CEO Pete O'Heeron, in the release.

"This is an exciting time at FibroBiologics as we continue progressing our clinical pipeline and developing innovative therapies to treat chronic diseases," he continues. "This new funding will fuel our growth in the lab and bring us one step closer to commercialization."

The campaign, launched this week, already has over 100 investors, at the time of publication, and has raised nearly $2 million, according to the page. The minimum investment is set at around $500, and the company's indicated valuation is $252.57 million.

In 2021, FibroBiologics announced its intention of going public. Last year, O'Heeron told InnovationMap on the Houston Innovators Podcast of the company's growth plans as well as the specifics of the technology.

Only two types of cells — stem cells and fibroblasts — can be used in cell therapy for a regenerative treatment, which is when specialists take healthy cells from a patient and inject them into a part of the body that needs it the most. As O'Heeron explains in the podcast, fibroblasts can do it more effectively and cheaper than stem cells.

"(Fibroblasts) can essentially do everything a stem cell can do, only they can do it better," says O'Heeron. "We've done tests in the lab and we've seen them outperform stem cells by a low of 50 percent to a high of about 220 percent on different disease paths."


Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Where to work: These 2024 Houston Innovation Awards finalists are hiring

growing biz

About a third of this year's startup finalists for the Houston Innovation Awards are hiring — from contract positions all the way up to senior-level roles.

The finalists, announced last week, range from the medical to energy to AI-related startups and will be celebrated next month on Thursday, November 14, at the Houston Innovation Awards at TMC Helix Park. Over 50 finalists will be recognized for their achievements across 13 categories, which includes the 2024 Trailblazer Legacy Awards that were announced earlier this month.

Click here to secure your tickets to see which growing startups win.

Let's take a look at where you could land a job at one of Houston's top startups.

Double-digit growth

When submitting their applications for the 2024 Houston Innovation Awards, every startup was asked if it was hiring. Four Houston startups replied that they are growing their teams rapidly.

Houston e-commerce startup Cart.com, one of the city's few $1 billion-plus “unicorns," reported that it is hiring approximately 50 new employees. The company, which focuses on commerce and logistics software development, secured $105 million in debt refinancing from investment manager BlackRock this summer following a $25 million series C extension round that brought Cart.com’s Series C total to $85 million. It currently has about 1,500 employees and 4 offices in three companies since it was founded in 2020, according to its website.

Houston energy tech company Enovate Ai (previously known as Enovate Upstream) reported that it is hiring 10-plus positions. The company, with 35 current employees, helps automate business and operational processes for decarbonization and energy optimization. Its CEO and founder, Camilo Mejia, sat down for an interview with InnovationMap in 2020. Click here to read the Q&A.

Square Robot is hiring about 10 new Houston employees and 15 total between Houston and other markets, according to its application. The advanced robotics company was founded in Boston in 2016 and opened its Houston office in August 2019. It develops submersible robots for the energy industry, specifically for storage tank inspections and eliminating the need for humans to enter dangerous and toxic environments. Last year it reported to be hiring 10 to 30 employees as well, ahead of the 2023 Houston Innovators Award. It currently has 25 Houston employees and about 50 nationally.

InnoVent Renewables LLC is also hiring 15 new employees to be based in Mexico. The company launched last year with its proprietary continuous pyrolysis technology that can convert waste tires, plastics, and biomass into fuels and chemicals. The company scaled up in 2022 and has operations in Pune, India, and Monterrey, Mexico, with plans for aggressive growth across North America and Latin America. It has 20 employees in Mexico and one in Houston currently.

Senior roles

Geothermal energy startup Sage Geosystems reported that it is looking to fill two senior roles in the company. It also said it anticipates further staff growth after its first commercial energy storage facility is commissioned at the end of the year in the San Antonio metro area. The company also recently expanded its partnership with the United States Department of Defense's Defense Innovation Unit and announced this month that it was selected to conduct geothermal project development initiatives at Naval Air Station in Corpus Christi. It has 12 full-time employees, according to its application.

Steady growth

Other companies reported that they are hiring a handful of new workers, which for some will increase headcount by about 50 percent to 100 percent.

Allterum Therapeutics reported that it is adding six employees to its current team of 13. The biopharmaceutical company that is under the Fannin Partners portfolio of med tech companies was awarded a $12 million product development grant from the Cancer Prevention and Research Institute of Texas this spring.

Dauntless XR will add between five and eight employees, according to its application. It currently has four employees. The augmented reality software company, originally founded as Future Sight AR in 2018, recently secured a NASA contract for space weather technology after rebranding and pivoting. The company's CEO, Lori-Lee Elliott, recently sat down with the Houston Innovators Podcast. Click here to hear the interview.

Syzygy Plasmonics is hiring four positions to add to its team of 120. The company was named to Fast Company's energy innovation list earlier this year.

Venus Aerospace is adding five to 10 key hires to its team of 72. Andrew Duggleby founded the company with his wife and CEO Sassie in 2020, before relocating to the Houston Spaceport in 2021. Last year, Venus raised a $20 million series A round, and it successfully ran the first long-duration engine test of their Rotating Detonation Rocket Engine in partnership with the Defense Advanced Research Projects Agency, or DARPA, earlier this year.

​Seeking selectively

Other finalists are adding to their teams with a handful of new hires of contract gigs.

​Future roles

Other finalists reported that they are currently not hiring, but had plans to in the near future.

NanoTech Materials Inc., which recently moved to a new facility, is not currently. Hiring but said it plans with new funding during its series B.

Renewable energy startup CLS Wind is not hiring at this time but reported that it plans to when the company closes funding in late 2024.

Houston-area researchers score $1.5M grant to develop storm response tech platform

fresh funding

Researchers from Rice University have secured a $1.5 million grant from the National Science Foundation to continue their work on improving safety and resiliency of coastal communities plagued by flooding and hazardous weather.

The Rice team of engineers and collaborators includes Jamie Padgett, Ben Hu, and Avantika Gori along with David Retchless at Texas A&M University at Galveston. The researchers are working in collaboration with the Severe Storm Prediction, Education and Evacuation from Disasters (SSPEED) Center and the Ken Kennedy Institute at Rice and A&M-Galveston’s Institute for a Disaster Resilient Texas.

Together, the team is developing and hopes to deploy “Open-Source Situational Awareness Framework for Equitable Multi-Hazard Impact Sensing using Responsible AI,” or OpenSafe.AI, a new platform that utilizes AI, data, and hazard and resilience models "to provide timely, reliable and equitable insights to emergency response organizations and communities before, during and after tropical cyclones and coastal storm events," reads a news release from Rice.

“Our goal with this project is to enable communities to better prepare for and navigate severe weather by providing better estimates of what is actually happening or might happen within the next hours or days,” Padgett, Rice’s Stanley C. Moore Professor in Engineering and chair of the Department of Civil and Environmental Engineering, says in the release. “OpenSafe.AI will take into account multiple hazards such as high-speed winds, storm surge and compound flooding and forecast their potential impact on the built environment such as transportation infrastructure performance or hazardous material spills triggered by severe storms.”

OpenSafe.AI platform will be developed to support decision makers before, during, and after a storm.

“By combining cutting-edge AI with a deep understanding of the needs of emergency responders, we aim to provide accurate, real-time information that will enable better decision-making in the face of disasters,” adds Hu, associate professor of computer science at Rice.

In the long term, OpenSafe.AI hopes to explore how the system can be applied to and scaled in other regions in need of equitable resilience to climate-driven hazards.

“Our goal is not only to develop a powerful tool for emergency response agencies along the coast but to ensure that all communities ⎯ especially the ones most vulnerable to storm-induced damage ⎯ can rely on this technology to better respond to and recover from the devastating effects of coastal storms,” adds Gori, assistant professor of civil and environmental engineering at Rice.

------

This article originally ran on EnergyCapital.

3+ Houston innovators to know this week

who's who

Editor's note: Every week, I introduce you to a handful of Houston innovators to know recently making headlines with news of innovative technology, investment activity, and more. This week's batch includes a drone tech startup founder, biotech investor, and health care innovator.

Divyaditya Shrivastava, co-founder of Paladin

Paladin’s AI-enhanced autonomous drones help public safety agencies, such as police and fire departments, respond to 911 calls. Photo via LinkedIn

Houston-based Paladin, whose remotely controlled drones help first responders react quickly to emergencies, has collected $5.2 million in seed funding.

Gradient, a seed fund that backs AI-oriented startups, led the round. Also participating were Toyota Ventures, the early-stage VC arm of Japanese automaker Toyota; venture capital firm Khosla Ventures; and VC fund 1517. The company was co-founded by Divyaditya Shrivastava and Trevor Pennypacker.

Among the agencies that have tried out Paladin’s technology is the Houston area’s Memorial Villages Police Department. The department participated in a three-month Paladin pilot project in 2019. Read more.

Veronica Breckenridge (née Wu), founder of First Bight Ventures

Veronica Breckenridge, founder of First Bight VenturesInvestor advocates now is the time to position Houston as a leading biomanufacturing hub

Veronica Breckenridge is the founder of First Bight Ventures, which just celebrated three portfolio companies. Photo courtesy

Three portfolio companies of Houston venture capital firm First Bight Ventures have received a combined $5.25 million from the U.S. Defense Department’s Distributed Bioindustrial Manufacturing Program.

“The allocation of funds by the federal government will be critical in helping grow biomanufacturing capacity,” Veronica Breckenridge (née Wu), founder of First Bight, says in a news release. “We are very proud to represent three dynamic companies that are awardees of this competitive and widely praised program.” Read more.

Sunil Sheth, associate professor in the Department of Neurology at McGovern Medical School at UTHealth Houston

UTHealth Houston has secured millions in grant funding — plus has reached a new milestone for one of its projects. Photo via utsystem.edu

UTHealth recently received a grant that will improve the odds for patients who have had a stroke with the successful re-opening of a blocked vessel through endovascular surgery. The $2.5 million grant from the National Institute of Neurological Disorders and Stroke, part of the National Institutes of Health, will fund a five-year study that will include the creation of a machine-learning program that will be able to predict which stroke patients with large blood vessel blockages will benefit most from endovascular therapy.

The investigators will form a database of imaging and outcomes of patients whose blockages were successfully opened, called reperfusion, from three U.S. hospitals. This will allow them to identify clinical and imaging-based predictors of damage in the brain after reperfusion. From there, the deep-learning model will help clinicians to know which patients might go against the tenet that the sooner you treat a patient, the better.

“This is shaking our core of deciding who we treat, and when, and how, but also, how we are evaluating them? Our current methods of determining benefit with imaging are not good enough,” says principal investigator and associate professor in the Department of Neurology at McGovern Medical School at UTHealth Houston, Sunil Sheth. Read more.

Top innovators: 2024 Houston Innovation Awards finalists revealed

Here's what Houston startups and innovators will be honored at the Houston Innovation Awards on November 14. Graphic via Gow Media

After nearly 300 nominations, InnovationMap and its group of judges are ready to reveal the finalists for this year's Houston Innovation Awards.

Taking place on Thursday, November 14, the Houston Innovation Awards celebrates all of Houston's innovation ecosystem — startups, entrepreneurs, investors, mentors, and more. Over 50 finalists will be recognized in particular for their achievements across 13 categories, which includes the 2024 Trailblazer Legacy Awards that were announced earlier this month.

Click here to see the 2024 Houston Innovation Awards finalists.