The probe or sensor, known as spinalNET, is used to explore how neurons in the spinal cord process sensation and control movement. Photo by Jeff Fitlow/Rice University

A team of Rice University engineers has developed an implantable probe over a hundred times smaller than the width of a hair that aims to help develop better treatments for spinal cord disease and injury.

Detailed in a recent study published in Cell Reports, the probe or sensor, known as spinalNET, is used to explore how neurons in the spinal cord process sensation and control movement, according to a statement from Rice. The research was supported by the National Institutes of Health, Rice, the California-based Salk Institute for Biological Studies, and the philanthropic Mary K. Chapman Foundation based in Oklahoma.

The soft and flexible sensor was used to record neuronal activity in freely moving mice with high resolution for multiple days. Historically, tracking this level of activity has been difficult for researchers because the spinal cord and its neurons move so much during normal activity, according to the team.

“We developed a tiny sensor, spinalNET, that records the electrical activity of spinal neurons as the subject performs normal activity without any restraint,” Yu Wu, a research scientist at Rice and lead author of the study said in a statement. “Being able to extract such knowledge is a first but important step to develop cures for millions of people suffering from spinal cord diseases.”

The team says that before now the spinal cord has been considered a "black box." But the device has already helped the team uncover new findings about the body's rhythmic motor patterns, which drive walking, breathing and chewing.

Lan Luan (from left), Yu Wu, and Chong Xie are working on the breakthrough device. Photo by Jeff Fitlow/Rice University

"Some (spinal neurons) are strongly correlated with leg movement, but surprisingly, a lot of neurons have no obvious correlation with movement,” Wu said in the statement. “This indicates that the spinal circuit controlling rhythmic movement is more complicated than we thought.”

The team said they hope to explore these findings further and aim to use the technology for additional medical purposes.

“In addition to scientific insight, we believe that as the technology evolves, it has great potential as a medical device for people with spinal cord neurological disorders and injury,” Lan Luan, an associate professor of electrical and computer engineering at Rice and a corresponding author on the study, added in the statement.

Rice researchers have developed several implantable, minimally invasive devices to address health and mental health issues.

In the spring, the university announced that the United States Department of Defense had awarded a four-year, $7.8 million grant to the Texas Heart Institute and a Rice team led by co-investigator Yaxin Wang to continue to break ground on a novel left ventricular assist device (LVAD) that could be an alternative to current devices that prevent heart transplantation.

That same month, the university shared news that Professor Jacob Robinson had published findings on minimally invasive bioelectronics for treating psychiatric conditions. The 9-millimeter device can deliver precise and programmable stimulation to the brain to help treat depression, obsessive-compulsive disorder and post-traumatic stress disorder.
Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Texas Space Commission doles out $5.8 million to Houston companies

On A Mission

Two Houston-area companies have landed more than $5.8 million in funding from the Texas Space Commission.

The commission granted up to $5.5 million to Houston-based Axiom Space and up to $347,196 to Conroe-based FluxWorks.

The two-year-old commission previously awarded $95.3 million to 14 projects. A little over $34 million remains in the commission-managed Space Exploration and Aeronautics Research Fund.

Axiom Space, a commercial spaceflight company, said the new funding will go toward the development of its orbital data center capabilities. By the end of this year, Axiom plans to launch two free-flying nodes in low-Earth orbit to support its orbital data center operations. More nodes are set to go online in the coming years.

“Axiom Space is actively evaluating how our [orbital data center] architecture can enhance critical U.S. capabilities, including the proposed Golden Dome missile defense architecture,” Jason Aspiotis, global director of in-space data and security at Axiom, said in a news release. “In this context, real-time, around-the-clock availability, secure orbital processing, and AI-driven autonomy are vital for ensuring mission success.”

Founded in 2021, FluxWorks provides magnetic gear technology that was developed at Texas A&M University.

In 2024, FluxWorks was one of two startups to receive the Technology in Space Prize, funded by Boeing and the Center for the Advancement of Science in Space (CASIS), which manages the International Space Station National Laboratory.

FluxWorks is testing the performance of magnetic gear in microgravity environments, such as the International Space Station.

“Gearboxes aim to reduce the mass of motors required in a variety of applications; however, the lubricant needed to make them work properly is not designed for use in extreme environments like space,” according to a 2024 news release about the Technology in Space Prize. “Magnetic gears do not require lubricant, making them an appealing alternative.”

The Texas Space Commission granted $25 million to Houston aerospace companies Starlab Space and Intuitive Machines earlier this year. Read more here.

3 Houston startups named most innovative in Texas by LexisNexis

report card

Three Houston companies claimed spots on LexisNexis's 10 Most Innovative Startups in Texas report, with two working in the geothermal energy space.

Sage Geosystems claimed the No. 3 spot on the list, and Fervo Energy followed closely behind at No. 5. Fintech unicorn HighRadius rounded out the list of Houston companies at No. 8.

LexisNexis Intellectual Property Solutions compiled the report. It was based on each company's Patent Asset Index, a proprietary metric from LexisNexis that identifies the strength and value of each company’s patent assets based on factors such as patent quality, geographic scope and size of the portfolio.

Houston tied with Austin, each with three companies represented on the list. Caris Life Sciences, a biotechnology company based in Dallas, claimed the top spot with a Patent Asset Index more than 5 times that of its next competitor, Apptronik, an Austin-based AI-powered humanoid robotics company.

“Texas has always been fertile ground for bold entrepreneurs, and these innovative startups carry that tradition forward with strong businesses based on outstanding patent assets,” Marco Richter, senior director of IP analytics and strategy for LexisNexis Intellectual Property Solutions, said in a release. “These companies have proven their innovation by creating the most valuable patent portfolios in a state that’s known for game-changing inventions and cutting-edge technologies.We are pleased to recognize Texas’ most innovative startups for turning their ideas into patented innovations and look forward to watching them scale, disrupt, and thrive on the foundation they’ve laid today.”

This year's list reflects a range in location and industry. Here's the full list of LexisNexis' 10 Most Innovative Startups in Texas, ranked by patent portfolios.

  1. Caris (Dallas)
  2. Apptronik (Austin)
  3. Sage Geosystems (Houston)
  4. HiddenLayer (Austin)
  5. Fervo Energy (Houston)
  6. Plus One Robotics (San Antonio)
  7. Diligent Robotics (Austin)
  8. HighRadius (Houston)
  9. LTK (Dallas)
  10. Eagle Eye Networks (Austin)

Sage Geosystems has partnered on major geothermal projects with the United States Department of Defense's Defense Innovation Unit, the U.S. Air Force and Meta Platforms. Sage's 3-megawatt commercial EarthStore geothermal energy storage facility in Christine, Texas, was expected to be completed by the end of last year.

Fervo Energy fully contracted its flagship 500 MW geothermal development, Cape Station, this spring. Cape Station is currently one of the world’s largest enhanced geothermal systems (EGS) developments, and the station will begin to deliver electricity to the grid in 2026. The company was recently named North American Company of the Year by research and consulting firm Cleantech Group and came in at No. 6 on Time magazine and Statista’s list of America’s Top GreenTech Companies of 2025. It's now considered a unicorn, meaning its valuation as a private company has surpassed $1 billion.

Meanwhile, HighRadius announced earlier this year that it plans to release a fully autonomous finance platform for the "office of the CFO" by 2027. The company reached unicorn status in 2020.

---

This article originally appeared on Energy Capital HTX.

UH student earns prestigious award for cancer vaccine research

up-and-comer

Cole Woody, a biology major in the College of Natural Sciences and Mathematics at the University of Houston, has been awarded a Barry Goldwater Scholarship, becoming the first sophomore in UH history to earn the prestigious prize for research in natural sciences, mathematics and engineering.

Woody was recognized for his research on developing potential cancer vaccines through chimeric RNAs. The work specifically investigates how a vaccine can more aggressively target cancers.

Woody developed the MHCole Pipeline, a bioinformatic tool that predicts peptide-HLA binding affinities with nearly 100 percent improvement in data processing efficiency. The MHCole Pipeline aims to find cancer-specific targets and develop personalized vaccines. Woody is also a junior research associate at the UH Sequencing Core and works in Dr. Steven Hsesheng Lin’s lab at MD Anderson Cancer Center.

“Cole’s work ethic and dedication are unmatched,” Preethi Gunaratne, director of the UH Sequencing Core and professor of Biology & Biochemistry at NSM, said in a news release. “He consistently worked 60 to 70 hours a week, committing himself to learning new techniques and coding the MHCole pipeline.”

Woody plans to earn his MD-PhD and has been accepted into the Harvard/MIT MD-PhD Early Access to Research Training (HEART) program. According to UH, recipients of the Goldwater Scholarship often go on to win various nationally prestigious awards.

"Cole’s ability to independently design and implement such a transformative tool at such an early stage in his career demonstrates his exceptional technical acumen and creative problem-solving skills, which should go a long way towards a promising career in immuno-oncology,” Gunaratne added in the release.