Dr. Kenneth Liao, chief of cardiothoracic transplantation and mechanical circulatory support at Baylor St. Luke's Medical Center, is one of around 50 surgeons in the country considered experts of this new surgery robotics tool. Photo courtesy of Baylor St. Luke's

Dr. Kenneth Liao is pioneering a less invasive form of heart surgery at a time when distanced medicine has become more important than ever with the help of six team members and one robot.

As the chief of cardiothoracic transplantation and mechanical circulatory support at Baylor St. Luke's Medical Center, Liao has performed 116 robotic cardiac surgeries since coming on board in 2019 (as of press time). With Liao at the helm, Baylor St. Luke's has become a top cardiac robotics program in the country and is the only hospital in Houston to practice this highly-specialized form of surgery.

Liao's four-armed robot friend is known as the da Vinci robotic system and was first designed to assist in battlefield procedures. Now on its fourth generation, the robot allows surgeons like Liao to treat heart diseases and conditions that typically would require open heart surgery through a one-to-two inch incision near the ribs. In many surgeries, it also allows surgeons to keep a patient's heart beating, lowering the risk of stroke.

"It's a totally game changing component to conventional surgery," Liao says, who's one of about 50 surgeons in the country with his level of command over the tool.

Once inside, the da Vinci robot uses tiny instruments to perform surgical practices from suturing to cutting to tying a knot all within the rigid chest cage, which in a typical open heart surgery would have to be broken to perform such tasks.

The surgeon, who's seated about 10 feet away from the patient, controls the tools through a joystick connected to a computer console that shows an enhanced 3D view of the patient's chest. Liao says the screen provides a better visual of the heart than if he was seeing it with his own eyes, as it magnifies the field of surgery tenfold. This method also gives surgeons a better view of areas of the heart that they cannot easily see from above during traditional procedures.

The da Vinci can be used for bypass, grafting, pacemaker, and valve repair surgeries, and it has been proven to result in less blood loss and a faster, less painful recovery. Similar technology has also been adopted for prostate and gynecological surgeries. "It gives you the advantage of minimizing the trauma," Liao says.

And though the da Vinci was developed years before the pandemic, it puts patients at a lower risk of exposure to any outside contaminants, Liao adds, as the robot alone is interfacing with the patient through a small port, compared to doctors, nurses, and assistants hovering over an open chest cavity.

"Technology will theoretically reduce a patient's exposure to COVID in the operation room," he says. "I think that's common sense."

Liao was an early adopter of robotics, when the technology was much less user friendly. He performed the first robotic heart surgery in the state of Minnesota in 2003 and has worked with the developers of the da Vinci ever since to help improve the product after many other surgeons dismissed it.

He says today there is a renewed interest in the highly technical process and he believes it will become an emphasis for younger surgeons.

"This generation of surgeons are young and they are very indebted to computer technology and games. For them looking at screens and controlling the hand joystick control is much more familiar than for the older generation that was trained 20 years ago." he says.

The incredible technology helps, too. "A lot of times, as surgeons, we train in the old way. It's very difficult to change the systems," he says. "You need a major technology revolution to change the teaching and training."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Texas space co. takes giant step toward lunar excavator deployment

Out of this world

Lunar exploration and development are currently hampered by the fact that the moon is largely devoid of necessary infrastructure, like spaceports. Such amenities need to be constructed remotely by autonomous vehicles, and making effective devices that can survive the harsh lunar surface long enough to complete construction projects is daunting.

Enter San Antonio-based Astroport Space Technologies. Founded in San Antonio in 2020, the company has become a major part of building plans beyond Earth, via its prototype excavator, and in early February, it completed an important field test of its new lunar excavator.

The new excavator is designed to function with California-based Astrolab's Flexible Logistics and Exploration (FLEX) rover, a highly modular vehicle that will perform a variety of functions on the surface of the moon.

In a recent demo, the Astroport prototype excavator successfully integrated with FLEX and proceeded to dig in a simulated lunar surface. The excavator collected an average of 207 lbs (94kg) of regolith (lunar surface dust) in just 3.5 minutes. It will need that speed to move the estimated 3,723 tons (3,378 tonnes) of regolith needed for a lunar spaceport.

After the successful test, both Astroport and Astrolab expressed confidence that the excavator was ready for deployment. "Leading with this successful excavator demo proves that our technology is no longer theoretical—it is operational," said Sam Ximenes, CEO of Astroport.

"This is the first of many implements in development that will turn Astrolab's FLEX rover into the 'Swiss Army Knife' of lunar construction. To meet the infrastructure needs of the emerging lunar economy, we must build the 'Port' before the 'Ship' arrives. By leveraging the FLEX platform, we are providing the Space Force, NASA, and commercial partners with a 'Shovel-Ready' construction capability to secure the lunar high ground."

"We are excited to provide the mobility backbone for Astroport's groundbreaking construction technology," said Jaret Matthews, CEO of Astrolab, in a release. "Astrolab is dedicated to establishing a viable lunar ecosystem. By combining our FLEX rover's versatility with Astroport's civil engineering expertise, we are delivering the essential capabilities required for a sustainable lunar economy."

---

This article originally appeared on CultureMap.com.

Houston biotech co. raises $11M to advance ALS drug development

drug money

Houston-based clinical-stage biotechnology company Coya Therapeutics (NASDAQ: COYA) has raised $11.1 million in a private investment round.

India-based pharmaceuticals company Dr. Reddy’s Laboratories Inc. led the round with a $10 million investment, according to a news release. New York-based investment firm Greenlight Capital, Coya’s largest institutional shareholder, contributed $1.1 million.

The funding was raised through a definitive securities purchase agreement for the purchase and sale of more than 2.5 million shares of Coya's common stock in a private placement at $4.40 per share.

Coya reports that it plans to use the proceeds to scale up manufacturing of low-dose interleukin-2 (IL-2), which is a component of its COYA 302 and will support the commercial readiness of the drug. COYA 302 enhances anti-inflammatory T cell function and suppresses harmful immune activity for treatment of Amyotrophic Lateral Sclerosis (ALS), Frontotemporal Dementia (FTD), Parkinson’s disease and Alzheimer’s disease.

The company received FDA acceptance for its investigational new drug application for COYA 302 for treating ALS and FTD this summer. Its ALSTARS Phase 2 clinical trial for ALS treatment launched this fall in the U.S. and Canada and has begun enrolling and dosing patients. Coya CEO Arun Swaminathan said in a letter to investors that the company also plans to advance its clinical programs for the drug for FTD therapy in 2026.

Coya was founded in 2021. The company merged with Nicoya Health Inc. in 2020 and raised $10 million in its series A the same year. It closed its IPO in January 2023 for more than $15 million. Its therapeutics uses innovative work from Houston Methodist's Dr. Stanley H. Appel.

New accelerator for AI startups to launch at Houston's Ion this spring

The Collectiv Foundation and Rice University have established a sports, health and wellness startup accelerator at the Ion District’s Collectiv, a sports-focused venture capital platform.

The AI Native Dual-Use Sports, Health & Wellness Accelerator, scheduled to formally launch in March, will back early-stage startups developing AI for the sports, health and wellness markets. Accelerator participants will gain access to a host of opportunities with:

  • Mentors
  • Advisers
  • Pro sports teams and leagues
  • University athletics programs
  • Health care systems
  • Corporate partners
  • VC firms
  • Pilot projects
  • University-based entrepreneurship and business initiatives

Accelerator participants will focus on sports tech verticals inlcuding performance and health, fan experience and media platforms, data and analytics, and infrastructure.

“Houston is quickly becoming one of the most important innovation hubs at the intersection of sports, health, and AI,” Ashley DeWalt, co-founder and managing partner of The Collectiv and founder of The Collectiv Foundation, said in a news release.

“By launching this platform with Rice University in the Ion District,” he added, “we are building a category-defining acceleration engine that gives founders access to world-class research, global sports properties, hospital systems, and venture capital. This is about turning sports-validated technology into globally scalable companies at a moment when the world’s attention is converging on Houston ahead of the 2026 World Cup.”

The Collectiv accelerator will draw on expertise from organizations such as the Rice-Houston Methodist Center for Human Performance, Rice Brain Institute, Rice Gateway Project and the Texas Medical Center.

“The combination of Rice University’s research leadership, Houston’s unmatched health ecosystem, and The Collectiv’s operator-driven investment platform creates a powerful acceleration engine,” Blair Garrou, co-founder and managing partner of the Mercury Fund VC firm and a senior adviser for The Collectiv, added in the release.

Additional details on programming, partners and application timelines are expected to be announced in the coming weeks.