Dr. Kenneth Liao, chief of cardiothoracic transplantation and mechanical circulatory support at Baylor St. Luke's Medical Center, is one of around 50 surgeons in the country considered experts of this new surgery robotics tool. Photo courtesy of Baylor St. Luke's

Dr. Kenneth Liao is pioneering a less invasive form of heart surgery at a time when distanced medicine has become more important than ever with the help of six team members and one robot.

As the chief of cardiothoracic transplantation and mechanical circulatory support at Baylor St. Luke's Medical Center, Liao has performed 116 robotic cardiac surgeries since coming on board in 2019 (as of press time). With Liao at the helm, Baylor St. Luke's has become a top cardiac robotics program in the country and is the only hospital in Houston to practice this highly-specialized form of surgery.

Liao's four-armed robot friend is known as the da Vinci robotic system and was first designed to assist in battlefield procedures. Now on its fourth generation, the robot allows surgeons like Liao to treat heart diseases and conditions that typically would require open heart surgery through a one-to-two inch incision near the ribs. In many surgeries, it also allows surgeons to keep a patient's heart beating, lowering the risk of stroke.

"It's a totally game changing component to conventional surgery," Liao says, who's one of about 50 surgeons in the country with his level of command over the tool.

Once inside, the da Vinci robot uses tiny instruments to perform surgical practices from suturing to cutting to tying a knot all within the rigid chest cage, which in a typical open heart surgery would have to be broken to perform such tasks.

The surgeon, who's seated about 10 feet away from the patient, controls the tools through a joystick connected to a computer console that shows an enhanced 3D view of the patient's chest. Liao says the screen provides a better visual of the heart than if he was seeing it with his own eyes, as it magnifies the field of surgery tenfold. This method also gives surgeons a better view of areas of the heart that they cannot easily see from above during traditional procedures.

The da Vinci can be used for bypass, grafting, pacemaker, and valve repair surgeries, and it has been proven to result in less blood loss and a faster, less painful recovery. Similar technology has also been adopted for prostate and gynecological surgeries. "It gives you the advantage of minimizing the trauma," Liao says.

And though the da Vinci was developed years before the pandemic, it puts patients at a lower risk of exposure to any outside contaminants, Liao adds, as the robot alone is interfacing with the patient through a small port, compared to doctors, nurses, and assistants hovering over an open chest cavity.

"Technology will theoretically reduce a patient's exposure to COVID in the operation room," he says. "I think that's common sense."

Liao was an early adopter of robotics, when the technology was much less user friendly. He performed the first robotic heart surgery in the state of Minnesota in 2003 and has worked with the developers of the da Vinci ever since to help improve the product after many other surgeons dismissed it.

He says today there is a renewed interest in the highly technical process and he believes it will become an emphasis for younger surgeons.

"This generation of surgeons are young and they are very indebted to computer technology and games. For them looking at screens and controlling the hand joystick control is much more familiar than for the older generation that was trained 20 years ago." he says.

The incredible technology helps, too. "A lot of times, as surgeons, we train in the old way. It's very difficult to change the systems," he says. "You need a major technology revolution to change the teaching and training."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston-based HPE wins $931M contract to upgrade military data centers

defense data centers

Hewlett Packard Enterprise (HPE), based in Spring, Texas, which provides AI, cloud, and networking products and services, has received a $931 million contract to modernize data centers run by the federal Defense Information Systems Agency.

HPE says it will supply distributed hybrid multicloud technology to the federal agency, which provides combat support for U.S. troops. The project will feature HPE’s Private Cloud Enterprise and GreenLake offerings. It will allow DISA to scale and accelerate communications, improve AI and data analytics, boost IT efficiencies, reduce costs and more, according to a news release from HPE.

The contract comes after the completion of HPE’s test of distributed hybrid multicloud technology at Defense Information Systems Agency (DISA) data centers in Mechanicsburg, Pennsylvania, and Ogden, Utah. This technology is aimed at managing DISA’s IT infrastructure and resources across public and private clouds through one hybrid multicloud platform, according to Data Center Dynamics.

Fidelma Russo, executive vice president and general manager of hybrid cloud at HPE, said in a news release that the project will enable DISA to “deliver innovative, future-ready managed services to the agencies it supports that are operating across the globe.”

The platform being developed for DISA “is designed to mirror the look and feel of a public cloud, replicating many of the key features” offered by cloud computing businesses such as Amazon Web Services (AWS), Microsoft Azure and Google Cloud Platform, according to The Register.

In the 1990s, DISA consolidated 194 data centers into 16. According to The Register, these are the U.S. military’s most sensitive data centers.

More recently, in 2024, the Fort Meade, Maryland-based agency laid out a five-year strategy to “simplify the network globally with large-scale adoption of command IT environments,” according to Data Center Dynamics.

Astros and Rockets launch new streaming service for Houston sports fans

Sports Talk

Houston sports fans now have a way to watch their favorite teams without a cable or satellite subscription. Launched December 3, the Space City Home Network’s SCHN+ service allows consumers to watch the Houston Astros and Houston Rockets via iOS, Apple TV, Android, Amazon Fire TV, or web browser.

A subscription to SCHN+ allows sports fans to watch all Astros and Rockets games, as well as behind-the-scenes features and other on-demand content. It’s priced at $19.99 per month or $199.99 annually (plus tax). People who watch Space City Network Network via their existing cable or satellite service will be able to access SCHN+ at no additional charge.

As the Houston Chronicle notes, the Astros and Rockets were the only MLB and NBA teams not to offer a direct-to-consumer streaming option.

“We’re thrilled to offer another great option to ensure fans have access to watch games, and the SCHN+ streaming app makes it easier than ever to cheer on the Rockets,” Rockets alternate governor Patrick Fertitta said in a statement.

“Providing fans with a convenient way to watch their favorite teams, along with our network’s award-winning programming, was an essential addition. This season feels special, and we’re committed to exploring new ways to elevate our broadcasts for Rockets fans to enjoy.”

Astros owner Jim Crane echoed Feritta’s comments, adding, “Providing fans options on how they view our games is important as we continue to grow the game – we want to make it accessible to as large an audience as possible. We are looking forward to the 2026 season and more Astros fans watching our players compete for another championship.”

SCHN+ is available to customers in Texas; Louisiana; Arkansas; Oklahoma; and the following counties in New Mexico: Dona Ana, Eddy, Lea, Chaves, Roosevelt, Curry, Quay, Union, and Debaca. Fans outside these areas will need to subscribe to the NBA and MLB out-of-market services.

---

This article originally appeared on CultureMap.com.

Rice University researchers unveil new model that could sharpen MRI scans

MRI innovation

Researchers at Rice University, in collaboration with Oak Ridge National Laboratory, have developed a new model that could lead to sharper imaging and safer diagnostics using magnetic resonance imaging, or MRI.

In a study recently published in The Journal of Chemical Physics, the team of researchers showed how they used the Fokker-Planck equation to better understand how water molecules respond to contrast agents in a process known as “relaxation.” Previous models only approximated how water molecules relaxed around contrasting agents. However, through this new model, known as the NMR eigenmodes framework, the research team has uncovered the “full physical equations” to explain the process.

“The concept is similar to how a musical chord consists of many notes,” Thiago Pinheiro, the study’s first author, a Rice doctoral graduate in chemical and biomolecular engineering and postdoctoral researcher in the chemical sciences division at Oak Ridge National Laboratory, said in a news release. “Previous models only captured one or two notes, while ours picks up the full harmony.”

According to Rice, the findings could lead to the development and application of new contrast agents for clearer MRIs in medicine and materials science. Beyond MRIs, the NMR relaxation method could also be applied to other areas like battery design and subsurface fluid flow.

“In the present paper, we developed a comprehensive theory to interpret those previous molecular dynamics simulations and experimental findings,” Dilipkumar Asthagiri, a senior computational biomedical scientist in the National Center for Computational Sciences at Oak Ridge National Laboratory, said in the release. ”The theory, however, is general and can be used to understand NMR relaxation in liquids broadly.”

The team has also made its code available as open source to encourage its adoption and further development by the broader scientific community.

“By better modeling the physics of nuclear magnetic resonance relaxation in liquids, we gain a tool that doesn’t just predict but also explains the phenomenon,” Walter Chapman, a professor of chemical and biomolecular engineering at Rice, added in the release. “That is crucial when lives and technologies depend on accurate scientific understanding.”

The study was backed by The Ken Kennedy Institute, Rice Creative Ventures Fund, Robert A. Welch Foundation and Oak Ridge Leadership Computing Facility at Oak Ridge National Laboratory.