CardioOne, which built a physician enablement platform for independent cardiologists, has been acquired by WindRose Health Investors. Photo via cardioone.com

A Houston health tech startup founded only last year has exited to a New York private equity firm.

CardioOne, which built a physician enablement platform for independent cardiologists, has been acquired by WindRose Health Investors. The complete terms of the deal were not disclosed, but according to a WindRose news release, the firm will provide up to $100 million of additional capital to go toward supporting CardioOne's growth.

The fresh influx of capital will go toward expanding and enhancing existing service options. The CardioOne leadership team will continue to be at the helm of the startup.

"We are excited for the opportunity to partner with WindRose as CardioOne embarks on its next chapter of growth," Dr. Jasen Gundersen, CardioOne's CEO and co-founder, says in the release. "We believe that working with WindRose, which has a history of successfully partnering with companies to help navigate the transition to value-based care, will empower us to continue supporting independent cardiologists while developing additional solutions that maximize each practice's potential in the shift to VBC arrangements."

Last year, CardioOne raised an $8 million seed round and announced key partnerships at clinics in New Jersey, Florida, and Pennsylvania, in addition to existing relationships in Texas and Maryland. CardioOne also partnered with MedAxiom, an organizational performance solutions provider in the industry.

"CardioOne's unique, physician-aligned model meets the market where it is and positions the Company to take advantage of the growing desire among cardiologists to maintain their independence," Oliver Moses, managing partner with WindRose, adds. "We believe CardioOne delivers a compelling tech-enabled offering to the independent cardiology market and has significant growth potential as the Company builds upon its momentum in 2023. We are excited to join forces with Jasen and his team as they continue to build upon the differentiated platform they have created."

CardioOne has fresh funding and new partners, resulting in a five-state expansion. Photo via Getty Images

Houston heart health startup secures $8M in funding, announces new partnerships

cardiatric care

With fresh funding, a Houston-based health tech platform that's less than a year old has grown its United States footprint.

CardioOne, which has created a cardiology care delivery enablement platform that serves independent cardiologists, has closed an $8 million seed round of funding and secured three new partnerships. Axios and Crunchbase report that the round has closed, and CardioOne confirms the funding and new partnerships in a press release.

The company has three new partnerships with independent cardiology clinics in New Jersey, Florida, and Pennsylvania, Cardiac Associates of New Jersey, Twin Hearts LLC, and Corrieius Cardiology. The trio joins existing partner practices in Texas and Maryland.

In addition to joining forces with these practices, CardioOne has entered into a partnership with MedAxiom, which is described as being "the cardiovascular community’s premier source for organizational performance solutions," in the release.

“CardioOne is optimizing cardiology practice management and providing new options for independent cardiologists,” Joe Sasson, MedAxiom’s executive vice president of ventures and chief commercial officer, says in the news release. “With CardioOne, independent cardiology practices can access the scale and leverage typically reserved for large hospital groups and are empowered to grow through additional service lines, strong network relationships, and payor contracts, including value-based care arrangements.”

Dr. Jasen Gunderson, who's based in Denver, is the CEO and co-founder of CardioOne, which was founded last year. He explains the challenges of independent cardiologists, which includes inefficient revenue cycle tools, incomplete vendor management systems, and other tech-based and administrative obstacles — most of which CardioOne addresses.

“Inadequate and fragmented technology is at the root of many of the problems that independent cardiologists are facing today,” Gunderson says in the release. “CardioOne’s solution removes the heavy administrative burdens, empowering cardiologists to focus on their expertise and true passion – the practice of medicine without feeling forced into acquisition.”

CardioOne's mission is to continue to help cardiology practices maintain their independence while keeping up with demand, patient care, and business growth.

"Our independence and clinical autonomy has allowed our practice to provide more personalized care to our patients, but in a consolidating market... the resources and technology investments required to run a practice group today make staying independent more difficult than ever before,” Dr. John H. Lee of Cardiac Associates of North Jersey, says in the release. “CardioOne is a true collaborator, serving as an extension of our operations and allowing us to focus on doing what we love — caring for patients.”

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston doctor wins NIH grant to test virtual reality for ICU delirium

Virtual healing

Think of it like a reverse version of The Matrix. A person wakes up in a hospital bed and gets plugged into a virtual reality game world in order to heal.

While it may sound far-fetched, Dr. Hina Faisal, a Houston Methodist critical care specialist in the Department of Surgery, was recently awarded a $242,000 grant from the National Institute of Health to test the effects of VR games on patients coming out of major surgery in the intensive care unit (ICU).

The five-year study will focus on older patients using mental stimulation techniques to reduce incidences of delirium. The award comes courtesy of the National Institute on Aging K76 Paul B. Beeson Emerging Leaders Career Development Award in Aging.

“As the population of older adults continues to grow, the need for effective, scalable interventions to prevent postoperative complications like delirium is more important than ever,” Faisal said in a news release.

ICU delirium is a serious condition that can lead to major complications and even death. Roughly 87 percent of patients who undergo major surgery involving intubation will experience some form of delirium coming out of anesthesia. Causes can range from infection to drug reactions. While many cases are mild, prolonged ICU delirium may prevent a patient from following medical advice or even cause them to hurt themselves.

Using VR games to treat delirium is a rapidly emerging and exciting branch of medicine. Studies show that VR games can help promote mental activity, memory and cognitive function. However, the full benefits are currently unknown as studies have been hampered by small patient populations.

Faisal believes that half of all ICU delirium cases are preventable through VR treatment. Currently, a general lack of knowledge and resources has been holding back the advancement of the treatment.

Hopefully, the work of Faisal in one of the busiest medical cities in the world can alleviate that problem as she spends the next half-decade plugging patients into games to aid in their healing.

Houston scientists develop breakthrough AI-driven process to design, decode genetic circuits

biotech breakthrough

Researchers at Rice University have developed an innovative process that uses artificial intelligence to better understand complex genetic circuits.

A study, published in the journal Nature, shows how the new technique, known as “Combining Long- and Short-range Sequencing to Investigate Genetic Complexity,” or CLASSIC, can generate and test millions of DNA designs at the same time, which, according to Rice.

The work was led by Rice’s Caleb Bashor, deputy director for the Rice Synthetic Biology Institute and member of the Ken Kennedy Institute. Bashor has been working with Kshitij Rai and Ronan O’Connell, co-first authors on the study, on the CLASSIC for over four years, according to a news release.

“Our work is the first demonstration that you can use AI for designing these circuits,” Bashor said in the release.

Genetic circuits program cells to perform specific functions. Finding the circuit that matches a desired function or performance "can be like looking for a needle in a haystack," Bashor explained. This work looked to find a solution to this long-standing challenge in synthetic biology.

First, the team developed a library of proof-of-concept genetic circuits. It then pooled the circuits and inserted them into human cells. Next, they used long-read and short-read DNA sequencing to create "a master map" that linked each circuit to how it performed.

The data was then used to train AI and machine learning models to analyze circuits and make accurate predictions for how untested circuits might perform.

“We end up with measurements for a lot of the possible designs but not all of them, and that is where building the (machine learning) model comes in,” O’Connell explained in the release. “We use the data to train a model that can understand this landscape and predict things we were not able to generate data on.”

Ultimately, the researchers believe the circuit characterization and AI-driven understanding can speed up synthetic biology, lead to faster development of biotechnology and potentially support more cell-based therapy breakthroughs by shedding new light on how gene circuits behave, according to Rice.

“We think AI/ML-driven design is the future of synthetic biology,” Bashor added in the release. “As we collect more data using CLASSIC, we can train more complex models to make predictions for how to design even more sophisticated and useful cellular biotechnology.”

The team at Rice also worked with Pankaj Mehta’s group in the department of physics at Boston University and Todd Treangen’s group in Rice’s computer science department. Research was supported by the National Institutes of Health, Office of Naval Research, the Robert J. Kleberg Jr. and Helen C. Kleberg Foundation, the American Heart Association, National Library of Medicine, the National Science Foundation, Rice’s Ken Kennedy Institute and the Rice Institute of Synthetic Biology.

James Collins, a biomedical engineer at MIT who helped establish synthetic biology as a field, added that CLASSIC is a new, defining milestone.

“Twenty-five years ago, those early circuits showed that we could program living cells, but they were built one at a time, each requiring months of tuning,” said Collins, who was one of the inventors of the toggle switch. “Bashor and colleagues have now delivered a transformative leap: CLASSIC brings high-throughput engineering to gene circuit design, allowing exploration of combinatorial spaces that were previously out of reach. Their platform doesn’t just accelerate the design-build-test-learn cycle; it redefines its scale, marking a new era of data-driven synthetic biology.”