Meet the new arrivals at Greentown Houston. Photo courtesy of Greentown Labs

Greentown Labs closed out the second quarter with the addition of 17 startups, and just over half are collaborating with the Houston location.

The technology represented by the new additions span the industries of energy, agriculture, and manufacturing, with a focus on carbon capture, electrical usage efficiency, and resource accessibility.

Carbon capture

Two of the newest Houston members, Capture6 and C-Quester, are also part of the Carbon2Value Initiative, a global partnership between the Greentown Labs, Urban Future Lab in New York, and Fraunhofer, headquartered in Michigan. C2V focuses on accelerating technology solutions that capture carbon dioxide for conversion into value-adding products and services.

Similar to the way a sponge is moistened and later wrung out, C-Quester pulls CO2 from flue gas into a temperature-sensitive material that can be heated later to release carbon, making the storage and transport of CO2 easier to manage.

Capture6 uses CO2 pulled from the atmosphere through their Direct Air Capture technology in combination with water treatment methodologies to remove excess salinity from saltwater and brine, resulting in greater freshwater recovery, usable elements for a variety of industries, and carbonates transformed into mineralized form to prevent continued carbon emissions.

Energy efficiency

The Helix MICRA filters created by Helix Earth Technologies can remove CO2 from power plants and other pollutants commonly encountered in the shipping industry. The filtering technology, initially developed for NASA, also dehumidifies air conditioning systems for more efficient energy use.

H2PRO uses its water-splitting technology, E-TAC, to produce green hydrogen in a two-step process that requires less energy to perform than the more common process of electrolysis with improved safety aspects.

Steam production and distribution get an upgrade with Imperium Technologies, the first electromechanical solution that enables previously unseen systems monitoring for reduction in greenhouse gas emissions by 20 percent, on average.

With a keen focus on predictive insights, eologix deploys smart sensors to give operators advance warning of situations that could cause rotor imbalances to keep wind turbines – and the energy they produce – optimized.

Resource accessibility

NW NA supports the goals of stability, predictability, and accessibility of electric-powered vehicle use with its high-power EV-charging station, mobile electricity storage units, and renewable energy measurement and forecasting tool.

From the Metaversity under development, to its oil and gas line leak detection systems, Kauel goes all-in on AI for its clients, even helping children with kinesthetic rehabilitation through augmented and virtual reality programs.

Finally, SkyH2O brings fresh, clean water to areas with limited access to existing infrastructure or natural water resources for commercial, military, and industrial use.

Another eight startups join the cohort named above as members of the Greentown Labs Boston location: Capro-X, Carbon2Stone, Cottage, Dioxycle, enaDyne, Global Algae Innovations, Terrafixing, and Thola.

------

This article originally ran on EnergyCapital.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

New York Stock Exchange Texas announces location for Dallas headquarters

NYSE Texas

A location has been chosen for The New York Stock Exchange Texas, the new Dallas-based offshoot of the The New York Stock Exchange in New York.

According to a release, the NYSE Texas has leased 28,000 square-feet of space at Old Parkland, the hospital-turned office space at 3819 Maple Ave. in Oak Lawn, where it will operate as a fully electronic equities exchange headquartered in Dallas. The property is owned by Dallas billionaire Harlan Crowe, who acquired it in 2006.

The NYSE is part of the Intercontinental Exchange, Inc., a global provider of technology and data. It was previously the NYSE Chicago, which will close once the bureau in Texas debuts.

They’ve also named a president to the Texas branch: Bryan Daniel, former chairman of the Texas Workforce Commission. In his new role over the NYSE Texas, Daniel will report to President of NYSE Group Lynn Martin.

Relocating from Chicago to Texas was a response to Texas' pro-business profile, Martin says in a statement.

“As the state with the largest number of NYSE listings, representing over $3.7 trillion in market value for our community, Texas is a market leader in fostering a pro-business atmosphere,” Martin says. “We are delighted to expand our presence in the Lone Star State, which plays a key role in driving our U.S. economy forward.”'

The move comes five months after the Texas Stock Exchange — AKA TXSE — announced plans to launch in Dallas and begin trading in 2026, pending approval from the U.S. Securities and Exchange Commission. The Texas Stock Exchange is backed by financial giants such as BlackRock, Citadel Securities, and Charles Schwab.

The NYSE expects the Texas location to open in 2026, where it will operate electronically, with stocks trading across multiple venues regardless of where they are first listed, according to the release.

---

This article originally appeared on CultureMap.com.

Houston researchers develop strong biomaterial that could replace plastic

plastic problem

Collaborators from two Houston universities are leading the way in engineering a biomaterial into a scalable, multifunctional material that could potentially replace plastic.

The research was led by Muhammad Maksud Rahman, an assistant professor of mechanical and aerospace engineering at the University of Houston and an adjunct assistant professor of materials science and nanoengineering at Rice University. The team shared its findings in a study in the journal Nature Communications earlier this month. M.A.S.R. Saadi, a doctoral student in material science and nanoengineering at Rice, served as the first author.

The study introduced a biosynthesis technique that aligns bacterial cellulose fibers in real-time, which resulted in robust biopolymer sheets with “exceptional mechanical properties,” according to the researchers.

Biomaterials typically have weaker mechanical properties than their synthetic counterparts. However, the team was able to develop sheets of material with similar strengths to some metals and glasses. And still, the material was foldable and fully biodegradable.

To achieve this, the team developed a rotational bioreactor and utilized fluid motion to guide the bacteria fibers into a consistent alignment, rather than allowing them to align randomly, as they would in nature.

The process also allowed the team to easily integrate nanoscale additives—like graphene, carbon nanotubes and boron nitride—making the sheets stronger and improving the thermal properties.

“This dynamic biosynthesis approach enables the creation of stronger materials with greater functionality,” Saadi said in a release. “The method allows for the easy integration of various nanoscale additives directly into the bacterial cellulose, making it possible to customize material properties for specific applications.”

Ultimately, the scientists at UH and Rice hope this discovery could be used for the “next disposable water bottle,” which would be made by biodegradable biopolymers in bacterial cellulose, an abundant resource on Earth.

Additionally, the team sees applications for the materials in the packaging, breathable textiles, electronics, food and energy sectors.

“We envision these strong, multifunctional and eco-friendly bacterial cellulose sheets becoming ubiquitous, replacing plastics in various industries and helping mitigate environmental damage,” Rahman said the release.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.