Hospital systems and nonprofits are looking for ways to reach patients virtually as face-to-face interactions continue to be limited due to the coronavirus. Getty Images

Hospitals across the country are trying their best to limit the number of people coming in and out — but how does that affect patients in need of non-COVID-19 treatment? Hospital systems are implementing new technology and training so that physicians can use telemedicine to connect virtually.

In March following telemedicine training, Houston Methodist began seeing hundreds more daily telemedicine sessions across its system, Josh Sol, administrative director of Innovation and Ambulatory Clinical Systems at Houston Methodist, previously told InnovationMap. And other hospital systems are following suit.

HCA Houston Healthcare's CareNow locations have implemented Virtual Care, a telehealth urgent care service. Patients can check in online during the urgent care center's operating hours to gain one-on-one access to care from a CareNow physician, nurse practitioner, or physician assistant. Providers, via video chat, will evaluate minor conditions and can prescribe non-narcotic medications when indicated.

If the situation calls for it, providers will tell the patient to come onsite to continue care.

"Virtual Care is an extension of our clinical urgent care services and fully supports our purpose to help people return to what they value in their lives, in an even more convenient way. We are proud to provide an easy solution for our patients' healthcare needs at their fingertips," says Dr. Mujtaba Ali-Khan, chief medical officer for HCA Houston Healthcare, in a news release.

Dallas-based CareNow was acquired by HCA in 2015 and has 16 locations in the greater Houston area.

Health care nonprofits are also taking advantage of remote ways to reach patients. Houston-based nonprofit CanCare is in the business of supporting cancer patients and their families and, despite a global pandemic, has not let up on its services to those in need. In fact, cancer patients with their weakened immune system are at greater risk of developing COVID-19 and are in need more than ever of CanCare's one-on-one matching emotional support service.

"The cancer community is in our thoughts and prayers during this time of uncertainty," says CanCare's President and CEO Cristina Vetrano in a news release. "Now more than ever, the community needs the help of our volunteers and support services. Our mission is not only to ensure the safety of clients, patients and caregivers but also to assure the community that they will continue to receive support throughout this challenging time."

Cancer patients can reach support via email at support@cancare.org or by calling the support line support line at 713-364-1652.

The Houston health care ecosystem will continue to see advances in telemedicine and remote care. One Houston startup, Medical Informatics, has created a virtual ICU program, called Sickbay, and the tech tool is being used to remotely monitor patients in Houston Methodist. The program works around the clock from a control hub to use artificial intelligence and algorithms to monitor patients.

"We designed our Sickbay platform to give lost data back to doctors, nurses and other members of the care team so they could save more lives," says Vincent Gagne, vice president of product for MIC, in a news release.

As the world emerges from COVID-19 — whenever and however that happens — telemedicine will have advanced as a viable option for physicians in a quicker way than it would have otherwise, Sol says.

"Telemedicine is here to stay now with the rapid adoption that just happened," he says. "The landscape will change tremendously."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

5 Rice University-founded startups named finalists ahead of prestigious pitch competition

student founders

Five student-founded startups have been named finalists for Rice University's prestigious pitch competition, hosted by Rice University’s Liu Idea Lab for Innovation and Entrepreneurship later this month

The teams will compete for a share of $100,000 in equity-free funding at the H. Albert Napier Rice Launch Challenge (NRLC), a venture competition that features Rice University's top student-founded startups. The competition is open to undergraduate, graduate, and MBA students at Rice.

Finalists will pitch their five-minute pitch before the Rice entrepreneurship community, followed by a Q&A from a panel of judges, at Rice Memorial Center Tuesday, April 22.

The first-place team will receive $50,000 in equity-free funding, with other prizes and awards ranging from $25,000 to $1,000. Apart from first-, second- and third-place prizes, NRLC will also name winners in categories like the Outstanding Achievement in Artificial Intelligence Prize, the Outstanding Achievement in Climate Solutions Prize, and the Audience Choice Award.

Here are the five startups founded by Rice students are heading to the finals.

Haast Autonomous

Haast Autonomous is building unmanned, long-range VTOL aircraft with cold storage to revolutionize organ transport—delivering life-saving medical supplies roof-to-roof faster, safer, and more efficiently than current systems.

Founders: Jason Chen, Ege Halac, Santiago Brent

Kinnections

Kinnections' Glove is a lightweight, wearable device that uses targeted vibrations to reduce tremors and improve motor control in Parkinson’s patients.

Founders: Emmie Casey, Tomi Kuye

Labshare

Labshare is an AI-powered web app that streamlines lab inventory and resource sharing, reducing waste and improving efficiency by connecting neighboring labs through a centralized, real-time platform.

Founders: Julian Figueroa Jr, John Tian, Mingyo Kang, Arnan Bawa, Daniel Kuo

SteerBio

SteerBio’s LymphGuide is a patented, single-surgery hydrogel solution that restores lymphatic function by promoting vessel growth and reducing rejection, offering a transformative, cost-effective treatment for lymphedema.

Founders: Mor Sela Golan, Martha Fowler, Alvaro Moreno Lozano

Veloci

Veloci Running creates innovative shoes that eliminate the trade-off between foot pain and leg tightness, empowering runners to train comfortably and reduce injury risk.

Founders: Tyler Strothman

Last year, HEXASpec took home first place for its inorganic fillers that improve heat management for the semiconductor industry. The team also won this year's Energy Venture Day and Pitch Competition during CERAWeek in the TEX-E student track.

Dow aims to power Texas manufacturing complex with next-gen nuclear reactors

clean energy

Dow, a major producer of chemicals and plastics, wants to use next-generation nuclear reactors for clean power and steam at a Texas manufacturing complex instead of natural gas.

Dow's subsidiary, Long Mott Energy, applied Monday to the U.S. Nuclear Regulatory Commission for a construction permit. It said the project with X-energy, an advanced nuclear reactor and fuel company, would nearly eliminate the emissions associated with power and steam generation at its plant in Seadrift, Texas, avoiding roughly 500,000 metric tons of planet-warming greenhouse gas emissions annually.

If built and operated as planned, it would be the first U.S. commercial advanced nuclear power plant for an industrial site, according to the NRC.

For many, nuclear power is emerging as an answer to meet a soaring demand for electricity nationwide, driven by the expansion of data centers and artificial intelligence, manufacturing and electrification, and to stave off the worst effects of a warming planet. However, there are safety and security concerns, the Union of Concerned Scientists cautions. The question of how to store hazardous nuclear waste in the U.S. is unresolved, too.

Dow wants four of X-energy's advanced small modular reactors, the Xe-100. Combined, those could supply up to 320 megawatts of electricity or 800 megawatts of thermal power. X-energy CEO J. Clay Sell said the project would demonstrate how new nuclear technology can meet the massive growth in electricity demand.

The Seadrift manufacturing complex, at about 4,700 acres, has eight production plants owned by Dow and one owned by Braskem. There, Dow makes plastics for a variety of uses including food and beverage packaging and wire and cable insulation, as well as glycols for antifreeze, polyester fabrics and bottles, and oxide derivatives for health and beauty products.

Edward Stones, the business vice president of energy and climate at Dow, said submitting the permit application is an important next step in expanding access to safe, clean, reliable, cost-competitive nuclear energy in the United States. The project is supported by the Department of Energy’s Advanced Reactor Demonstration Program.

The NRC expects the review to take three years or less. If a permit is issued, construction could begin at the end of this decade, so the reactors would be ready early in the 2030s, as the natural gas-fired equipment is retired.

A total of four applicants have asked the NRC for construction permits for advanced nuclear reactors. The NRC issued a permit to Abilene Christian University for a research reactor and to Kairos Power for one reactor and two reactor test versions of that company's design. It's reviewing an application by Bill Gates and his energy company, TerraPower, to build an advanced reactor in Wyoming.

X-energy is also collaborating with Amazon to bring more than 5 gigawatts of new nuclear power projects online across the United States by 2039, beginning in Washington state. Amazon and other tech giants have committed to using renewable energy to meet the surging demand from data centers and artificial intelligence and address climate change.

---

This story appeared on our sister site, EnergyCapitalHTX.com.

UH, Baylor researchers make breakthrough with new pediatric leukemia treatment device

childhood cancer

A team of Houston researchers has developed a new microfluidic device aimed at making treatments safer for children with hyperleukocytosis, a life-threatening hematologic emergency often seen in patients with leukemia.

Dr. Fong Lam, an associate professor of pediatrics at Baylor College of Medicine and a pediatric intensive care physician at Texas Children’s Hospital, partnered with Sergey Shevkoplyas, a professor of biomedical engineering at UH, on the device that uses a large number of tiny channels to quickly separate blood cells by size in a process called controlled incremental filtration, according to a news release from UH.

They tested whether performing cell separation with a high-throughput microfluidic device could alleviate the limitations of traditional conventional blood-filtering machines, which pose risks for pediatric patients due to their large extracorporeal volume (ECV), high flow rates and tendency to cause significant platelet loss in the patient. The results of their study, led by Mubasher Iqbal, a Ph.D. candidate in biomedical engineering at UH, were published recently in the journal Nature Communications.

“Continuously and efficiently separating leukocytes from recirculating undiluted whole blood — without device clogging and cell activation or damage — has long been a major challenge in microfluidic cell separation,” Shevkoplyas said in a news release. “Our study is the first to solve this problem.”

Hyperleukocytosis is a condition that develops when the body has an extremely high number of white blood cells, which in many cases is due to leukemia. According to the release, up to 20 percent to 30 percent of patients with acute leukemia develop hyperleukocytosis, and this places them at risk for potentially fatal complications.

The new device utilizes tiny channels—each about the width of a human hair—to efficiently separate blood cells through controlled incremental filtration. According to Lam, the team was excited that the new device could operate at clinically relevant flow rates.

The device successfully removed approximately 85 percent of large leukocytes and 90 percent of leukemic blasts from undiluted human whole blood without causing platelet loss or other adverse effects. It also operates with an ECV that’s about 1/70th of conventional leukapheresis machines, which makes it particularly suitable for infants and small children.

“Overall, our study suggests that microfluidics leukapheresis is safe and effective at selectively removing leukocytes from circulation, with separation performance sufficiently high to ultimately enable safe leukapheresis in children,” Shevkoplyas said in the release.