Houston airports deploy disinfecting robots in their terminals

now boarding: automation

Six Breezy One robots have landed in Houston's airports. Photo via buildwithrobots.com

What stands four feet tall, measures 22 inches wide, and weighs about 265 pounds? One of the six robots that disinfect George Bush Intercontinental/Houston Airport and William P. Hobby Airport.

Last year, the Houston Airport System spent close to $1 million for six Breezy One robots made by Albuquerque, New Mexico-based Build With Robots. The robots, each costing $160,000, now help the airports’ human crews keep the two airports sanitized.

George Bush Intercontinental has four of the robots, and Hobby has two.

“Breezy One is an autonomous disinfecting robot. It moves on its own and disinfects any route that someone chooses at the push of a button. It disperses a disinfectant fog which reaches all surfaces, penetrates fabrics, and even disinfects the air,” according to Build With Robots.

The robot disinfects germy surfaces such as tables, chairs, doorknobs, and keyboards. A Breezy One robot can decontaminate more than 150,000 square feet of space in one hour with a patented, environmentally safe disinfectant, purportedly eliminating 99.9999 percent of viruses and bacteria. New Mexico’s Sandia National Laboratories developed the disinfectant.

Build With Robots, founded in 2017, launched Breezy One in 2020 at the Albuquerque International Sunport. The company developed the technology in conjunction with the City of Albuquerque’s Aviation Department. In January, Build With Robots announced it raised $5 million in funding. That was preceded by a seed round of about $1 million.

Before the disinfectant-filled robots go about their work, members of the Build With Robots team map the buildings where they’ll operate autonomously. The team members then load the maps into the robots. The robots follow commands given by a facility’s custodial team.

Traci Rutoski, manager of custodial services at Hobby, says Build With Robots “is providing us with the best tools to keep our passengers, employees, and stakeholders safe.”

Sam Rea, terminal manager at George Bush Intercontinental, says the Breezy One robots have enabled the airport to step up cleanliness in the COVID-19 era.

“With the onset of the pandemic, we needed to explore new and innovative solutions so that when people come through the airports, whether for work or travel, they feel safe and secure,” Rhea says in a news release.

Augusto Bernal, a spokesman for the Houston Airport System, says that while the disinfecting robots have been effective, there are no plans to add more of them.

Aside from the Houston Airport System and the Albuquerque airport, customers of Build With Robots include HVAC manufacturer Goodwin’s 4.2-million-square-foot operation at Daikin Texas Technology Park in Waller, Mount Vernon ISD in East Texas, the University of New Mexico in Albuquerque and Albuquerque’s Electric Playhouse amusement center. The robots, which can be purchased or leased, are designed to sanitize airports, arenas, stadiums, school buildings, and other heavily trafficked places.

Goodwin has installed one robot in Waller.

“This robot’s going to be able to clean 200,000 square feet of office and conference rooms in two, maybe two-and-a-half hours,” Charlie Strange, facilities manager at Goodwin’s Waller operation, told The Verge last November. “It would take my team all night long to do that — wiping down every surface by hand.”

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston organizations launch collaborative center to boost cancer outcomes

new to HOU

Rice University's new Synthesis X Center officially launched last month to bring together experts in cancer care and chemistry.

The center was born out of what started about seven years ago as informal meetings between Rice chemist Han Xiao's research group and others from the Baylor College of Medicine’s Dan L Duncan Comprehensive Cancer Center at the Baylor College of Medicine. The level of collaboration between the two teams has grown significantly over the years, and monthly meetings now draw about 100 participants from across disciplines, fields and Houston-based organizations, according to a statement from Rice.

Researchers at the new SynthX Center will aim to turn fundamental research into clinical applications and make precision adjustments to drug properties and molecules. It will focus on improving cancer outcomes by looking at an array of factors, including prevention and detection, immunotherapies, the use of artificial intelligence to speed drug discovery and development, and several other topics.

"At Rice, we are strong on the fundamental side of research in organic chemistry, chemical biology, bioengineering and nanomaterials,” Xiao says in the statement. “Starting at the laboratory bench, we can synthesize therapeutic molecules and proteins with atom-level precision, offering immense potential for real-world applications at the bedside ... But the clinicians and fundamental researchers don’t have a lot of time to talk and to exchange ideas, so SynthX wants to serve as the bridge and help make these connections.”

SynthX plans to issue its first merit-based seed grants to teams with representatives from Baylor and Rice this month.

With this recognition from Rice, the teams from Xiao's lab and the TMC will also be able to expand and formalize their programs. They will build upon annual retreats, in which investigators can share unpublished findings, and also plan to host a national conference, the first slated for this fall titled "Synthetic Innovations Towards a Cure for Cancer.”

“I am confident that the SynthX Center will be a great resource for both students and faculty who seek to translate discoveries from fundamental chemical research into medical applications that improve people’s lives,” Thomas Killian, dean of the Wiess School of Natural Sciences, says in the release.

Rice announced that it had invested in four other research centers along with SynthX last month. The other centers include the Center for Coastal Futures and Adaptive Resilience, the Center for Environmental Studies, the Center for Latin American and Latinx Studies and the Rice Center for Nanoscale Imaging Sciences.

Earlier this year, Rice also announced its first-ever recipients of its One Small Step Grant program, funded by its Office of Innovation. The program will provide funding to faculty working on "promising projects with commercial potential," according to the website.

Houston physicist scores $15.5M grant for high-energy nuclear physics research

FUTURE OF PHYSICS

A team of Rice University physicists has been awarded a prestigious grant from the Department of Energy's Office of Nuclear Physics for their work in high-energy nuclear physics and research into a new state of matter.

The five-year $15.5 million grant will go towards Rice physics and astronomy professor Wei Li's discoveries focused on the Compact Muon Solenoid (CMS), a large, general-purpose particle physics detector built on the Large Hadron Collider (LHC) at CERN, a European organization for nuclear research in France and Switzerland. The work is "poised to revolutionize our understanding of fundamental physics," according to a statement from Rice.

Li's team will work to develop an ultra-fast silicon timing detector, known as the endcap timing layer (ETL), that will provide upgrades to the CMS detector. The ETl is expected to have a time resolution of 30 picoseconds per particle, which will allow for more precise time-of-flight particle identification.

The Rice team is collaborating with others from MIT, Oak Ridge National Lab, the University of Illinois Chicago and University of Kansas. Photo via Rice.edu

This will also help boost the performance of the High-Luminosity Large Hadron Collider (HL-LHC), which is scheduled to launch at CERN in 2029, allowing it to operate at about 10 times the luminosity than originally planned. The ETL also has applications for other colliders apart from the LHC, including the DOE’s electron-ion collider at the Brookhaven National Laboratory in Long Island, New York.

“The ETL will enable breakthrough science in the area of heavy ion collisions, allowing us to delve into the properties of a remarkable new state of matter called the quark-gluon plasma,” Li explained in a statement. “This, in turn, offers invaluable insights into the strong nuclear force that binds particles at the core of matter.”

The ETL is also expected to aid in other areas of physics, including the search for the Higgs particle and understanding the makeup of dark matter.

Li is joined on this work by co-principal investigator Frank Geurts and researchers Nicole Lewis and Mike Matveev from Rice. The team is collaborating with others from MIT, Oak Ridge National Lab, the University of Illinois Chicago and University of Kansas.

Last year, fellow Rice physicist Qimiao Si, a theoretical quantum physicist, earned the prestigious Vannevar Bush Faculty Fellowship grant. The five-year fellowship, with up to $3 million in funding, will go towards his work to establish an unconventional approach to create and control topological states of matter, which plays an important role in materials research and quantum computing.

Meanwhile, the DOE recently tapped three Houston universities to compete in its annual startup competition focused on "high-potential energy technologies,” including one team from Rice.

------

This article originally ran on EnergyCapital.