now boarding: automation

Houston airports deploy disinfecting robots in their terminals

Six Breezy One robots have landed in Houston's airports. Photo via buildwithrobots.com

What stands four feet tall, measures 22 inches wide, and weighs about 265 pounds? One of the six robots that disinfect George Bush Intercontinental/Houston Airport and William P. Hobby Airport.

Last year, the Houston Airport System spent close to $1 million for six Breezy One robots made by Albuquerque, New Mexico-based Build With Robots. The robots, each costing $160,000, now help the airports’ human crews keep the two airports sanitized.

George Bush Intercontinental has four of the robots, and Hobby has two.

“Breezy One is an autonomous disinfecting robot. It moves on its own and disinfects any route that someone chooses at the push of a button. It disperses a disinfectant fog which reaches all surfaces, penetrates fabrics, and even disinfects the air,” according to Build With Robots.

The robot disinfects germy surfaces such as tables, chairs, doorknobs, and keyboards. A Breezy One robot can decontaminate more than 150,000 square feet of space in one hour with a patented, environmentally safe disinfectant, purportedly eliminating 99.9999 percent of viruses and bacteria. New Mexico’s Sandia National Laboratories developed the disinfectant.

Build With Robots, founded in 2017, launched Breezy One in 2020 at the Albuquerque International Sunport. The company developed the technology in conjunction with the City of Albuquerque’s Aviation Department. In January, Build With Robots announced it raised $5 million in funding. That was preceded by a seed round of about $1 million.

Before the disinfectant-filled robots go about their work, members of the Build With Robots team map the buildings where they’ll operate autonomously. The team members then load the maps into the robots. The robots follow commands given by a facility’s custodial team.

Traci Rutoski, manager of custodial services at Hobby, says Build With Robots “is providing us with the best tools to keep our passengers, employees, and stakeholders safe.”

Sam Rea, terminal manager at George Bush Intercontinental, says the Breezy One robots have enabled the airport to step up cleanliness in the COVID-19 era.

“With the onset of the pandemic, we needed to explore new and innovative solutions so that when people come through the airports, whether for work or travel, they feel safe and secure,” Rhea says in a news release.

Augusto Bernal, a spokesman for the Houston Airport System, says that while the disinfecting robots have been effective, there are no plans to add more of them.

Aside from the Houston Airport System and the Albuquerque airport, customers of Build With Robots include HVAC manufacturer Goodwin’s 4.2-million-square-foot operation at Daikin Texas Technology Park in Waller, Mount Vernon ISD in East Texas, the University of New Mexico in Albuquerque and Albuquerque’s Electric Playhouse amusement center. The robots, which can be purchased or leased, are designed to sanitize airports, arenas, stadiums, school buildings, and other heavily trafficked places.

Goodwin has installed one robot in Waller.

“This robot’s going to be able to clean 200,000 square feet of office and conference rooms in two, maybe two-and-a-half hours,” Charlie Strange, facilities manager at Goodwin’s Waller operation, told The Verge last November. “It would take my team all night long to do that — wiping down every surface by hand.”

Trending News

Building Houston

 
 

A Rice research team is tapping into materials science to better understand Alzheimer’s disease, a UH professor is developing a treatment for hereditary vision loss, and a BCM researcher is looking at stress and brain cancer. Photo by Gustavo Raskosky/Rice University

Research, perhaps now more than ever, is crucial to expanding and growing innovation in Houston — and it's happening across the city right under our noses.

In InnovationMap's latest roundup of research news, three Houston institutions are working on life-saving health care research thanks to new technologies.

Rice University scientists' groundbreaking alzheimer's study

Angel Martí (right) and his co-authors (from left) Utana Umezaki and Zhi Mei Sonia He have published their latest findings on Alzheimer’s disease. Photo by Gustavo Raskosky/Rice University

According to the Centers for Disease Control and Prevention, Alzheimer’s disease will affect nearly 14 million people in the U.S. by 2060. A group of scientists from Rice University are looking into a peptide associated with the disease, and their study was published in Chemical Science.

Angel Martí — a professor of chemistry, bioengineering, and materials science and nanoengineering and faculty director of the Rice Emerging Scholars Program — and his team have developed a new approach using time-resolved spectroscopy and computational chemistry, according to a news release from Rice. The scientists "found experimental evidence of an alternative binding site on amyloid-beta aggregates, opening the door to the development of new therapies for Alzheimer’s and other diseases associated with amyloid deposits."

Amyloid plaque deposits in the brain are a main feature of Alzheimer’s, per Rice.

“Amyloid-beta is a peptide that aggregates in the brains of people that suffer from Alzheimer’s disease, forming these supramolecular nanoscale fibers, or fibrils” says Martí in the release. “Once they grow sufficiently, these fibrils precipitate and form what we call amyloid plaques.

“Understanding how molecules in general bind to amyloid-beta is particularly important not only for developing drugs that will bind with better affinity to its aggregates, but also for figuring out who the other players are that contribute to cerebral tissue toxicity,” he adds.

The National Science Foundation and the family of the late Professor Donald DuPré, a Houston-born Rice alumnus and former professor of chemistry at the University of Louisville, supported the research, which is explained more thoroughly on Rice's website.

University of Houston professor granted $1.6M for gene therapy treatment for rare eye disease

Muna Naash, a professor at UH, is hoping her research can result in treatment for a rare genetic disease that causes vision loss. Photo via UH.edu

A University of Houston researcher is working on a way to restore sight to those suffering from a rare genetic eye disease.

Muna Naash, the John S. Dunn Endowed Professor of biomedical engineering at UH, is expanding a method of gene therapy to potentially treat vision loss in patients with Usher Syndrome Type 2A, or USH2A, a rare genetic disease.

Naash has received a $1.6 million grant from the National Eye Institute to support her work. Mutations of the USH2A gene can include hearing loss from birth and progressive loss of vision, according to a news release from UH. Naash's work is looking at applying gene therapy — the introduction of a normal gene into cells to correct genetic disorders — to treat this genetic disease. There is not currently another treatment for USH2A.

“Our goal is to advance our current intravitreal gene therapy platform consisting of DNA nanoparticles/hyaluronic acid nanospheres to deliver large genes in order to develop safe and effective therapies for visual loss in Usher Syndrome Type 2A,” says Naash. “Developing an effective treatment for USH2A has been challenging due to its large coding sequence (15.8 kb) that has precluded its delivery using standard approaches and the presence of multiple isoforms with functions that are not fully understood."

BCM researcher on the impact of stress

This Baylor researcher is looking at the relationship between stress and brain cancer thanks to a new grant. Photo via Andriy Onufriyenko/Getty Images

Stress can impact the human body in a number of ways — from high blood pressure to hair loss — but one Houston scientist is looking into what happens to bodies in the long term, from age-related neurodegeneration to cancer.

Dr. Steven Boeynaems is assistant professor of molecular and human genetics at Baylor College of Medicine. His lab is located at the Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, and he also is a part of the Therapeutic Innovation Center, the Center for Alzheimer’s and Neurodegenerative Diseases, and the Dan L Duncan Comprehensive Cancer Center at Baylor.

Recently, the Cancer Prevention and Research Institute of Texas, or CPRIT, awarded Boeynaems a grant to continue his work studying how cells and organisms respond to stress.

“Any cell, in nature or in our bodies, during its existence, will have to deal with some conditions that deviate from its ideal environment,” Boeynaems says in a BCM press release. “The key issue that all cells face in such conditions is that they can no longer properly fold their proteins, and that leads to the abnormal clumping of proteins into aggregates. We have seen such aggregates occur in many species and under a variety of stress-related conditions, whether it is in a plant dealing with drought or in a human patient with aging-related Alzheimer’s disease."

Now, thanks to the CPRIT funding, he says his lab will now also venture into studying the role of cellular stress in brain cancer.

“A tumor is a very stressful environment for cells, and cancer cells need to continuously adapt to this stress to survive and/or metastasize,” he says in the release.

“Moreover, the same principles of toxic protein aggregation and protection through protein droplets seem to be at play here as well,” he continues. “We have studied protein droplets not only in humans but also in stress-tolerant organisms such as plants and bacteria for years now. We propose to build and leverage on that knowledge to come up with innovative new treatments for cancer patients.”

Trending News