Researchers from Rice University say their recent findings could revolutionize power grids, making energy transmission more efficient. Getty Images

A study from researchers at Rice University, published in Nature Communications, could lead to future advances in superconductors with the potential to transform energy use.

The study revealed that electrons in strange metals, which exhibit unusual resistance to electricity and behave strangely at low temperatures, become more entangled at a specific tipping point, shedding new light on these materials.

A team led by Rice’s Qimiao Si, the Harry C. and Olga K. Wiess Professor of Physics and Astronomy, used quantum Fisher information (QFI), a concept from quantum metrology, to measure how electron interactions evolve under extreme conditions. The research team also included Rice’s Yuan Fang, Yiming Wang, Mounica Mahankali and Lei Chen along with Haoyu Hu of the Donostia International Physics Center and Silke Paschen of the Vienna University of Technology. Their work showed that the quantum phenomenon of electron entanglement peaks at a quantum critical point, which is the transition between two states of matter.

“Our findings reveal that strange metals exhibit a unique entanglement pattern, which offers a new lens to understand their exotic behavior,” Si said in a news release. “By leveraging quantum information theory, we are uncovering deep quantum correlations that were previously inaccessible.”

The researchers examined a theoretical framework known as the Kondo lattice, which explains how magnetic moments interact with surrounding electrons. At a critical transition point, these interactions intensify to the extent that the quasiparticles—key to understanding electrical behavior—disappear. Using QFI, the team traced this loss of quasiparticles to the growing entanglement of electron spins, which peaks precisely at the quantum critical point.

In terms of future use, the materials share a close connection with high-temperature superconductors, which have the potential to transmit electricity without energy loss, according to the researchers. By unblocking their properties, researchers believe this could revolutionize power grids and make energy transmission more efficient.

The team also found that quantum information tools can be applied to other “exotic materials” and quantum technologies.

“By integrating quantum information science with condensed matter physics, we are pivoting in a new direction in materials research,” Si said in the release.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.

Houston's Nobel Prize winner, Jim Allison, is the star of Breakthrough, which premieres on Independent Lens at 9 pm Monday, April 27, on PBS, PBS.org, and the PBS Video App. Photo via SXSW.com

Documentary featuring Houston Nobel Prize winner to air on PBS

to-watch list

Not all heroes wear capes. In fact, our current coronavirus heroes are donning face masks as they save lives. One local health care hero has a different disease as his enemy, and you'll soon be able to stream his story.

Dr. James "Jim" Allison won the 2018 Nobel Prize in Physiology or Medicine for his work in battling cancer by treating the immune system — rather than the tumor. Allison, who is the chair of Immunology and executive director of the Immunotherapy Platform at MD Anderson Cancer Center, has quietly and often, singularly, waged war with cancer utilizing this unique approach.

The soft-spoken trailblazer is the subject of an award-winning documentary, Jim Allison: Breakthrough, which will air on PBS and its streaming channels on Monday, April 27 at 9 pm (check local listings for channel information). Lauded as "the most cheering film of the year" by the Washington Post, the film follows Allison's personal journey to defeat cancer, inspired and driven by the disease killed his mother.

Breakthrough is narrated by Woody Harrelson and features music by Willie Nelson, adding a distinct hint of Texana. (The film was a star at 2019's South by Southwest film festival.) The documentary charts Alice, Texas native as he enrolls at the University of Texas, Austin and ultimately, cultivates an interest in T cells and the immune system — and begins to frequent Austin's legendary music scene. Fascinated by the immune system's power to protect the body from disease, Allison's research soon focuses on how it can be used to treat cancer.

Viewers will find Allison charming, humble, and entertaining: the venerable doctor is also an accomplished blues harmonica player. Director Bill Haney weaves Allison's personal story with the medical case of Sharon Belvin, a patient diagnosed with melanoma in 2004 who soon enrolled in Allison's clinical trials. Belvin has since been entirely cancer-free, according to press materials.

"We are facing a global health challenge that knows no boundaries or race or religion, and we are all relying on gifted and passionate scientists and healthcare workers to contain and ultimately beat this thing," said Haney, in a statement. "Jim Allison and the unrelenting scientists like him are my heroes – and I'll bet they become yours!"

Jim Allison: Breakthrough premieres on Independent Lens at 9 pm Monday, April 27, on PBS, PBS.org, and the PBS Video App.

------

This article originally ran on CultureMap.

Jim Allison, immunotherapy researcher at MD Anderson and Nobel Prize recipient, is the subject of a new film that premiered at SXSW. Photo courtesy of MD Anderson Cancer Center

Film about Nobel Prize-winning Houston scientist premieres at SXSW

Now showing

For most of his career, James Allison has been a cancer research wildcatter fighting an oftentimes lonely battle for the advancement of immunotherapy. The medical community has historically been skeptical of the science, but nonetheless Allison dedicated his life to developing a better treatment to the disease that has claimed so many lives — including his mother's.

Last year, Allison, the chair of Immunology and executive director of the Immunotherapy Platform at MD Anderson, won the 2018 Nobel Prize in medicine, and Breakthrough, a film about Allison's progression from early researcher to Nobel Prize recipient, premiered on March 9 at the 2019 SXSW Interactive festival.

But despite the Nobel Prize and the new film both validating the science to the public, Allison says there's a lot more work to be done in immunotherapy. Allison, his colleague, Padmanee Sharma, and the filmmaker for Breakthrough, Bill Haney, hosted a discussion at SXSW about the future of immunotherapy.

"It's a time of considerable optimism — and we're just at the beginning," says Allison.

The film focuses on the man behind the science — a 70-year-old, harmonica-playing researcher from small-town Alice, Texas. It's both an ode to Allison's career and a thought-provoking take on all the work left to be done in the industry.

Immunotherapy is the process of targeting one's immune system's T-cells, infection-fighting white blood cells, to attack cancer cells. Sharma, a fellow MD Anderson oncology expert and clinician, says their work has received clinical approvals for treating Melanoma, kidney cancer, lung cancer, and bladder cancer. The scientists are now focused on expanding that treatment to other cancer types and building upon the established platform they've created, while also making sure nothing comes in the way of the facts of the science.

"It really requires that we dedicate ourselves to the basic science, understanding it and educating people about it, so we don't allow the facts and science get muddied by things that are political or nonfactual," Sharma says.

In a lot of ways, this is what Breakthrough has been able to do — communicate the facts on a platform where anyone can understand the science.

"We have a revolution on our hands, and thankfully we have people like Bill who can really tell the story well, because maybe as a scientist and a clinician, we're not always equally talented on telling the story to laypeople," Sharma says.

Moving forward, Allison says he's focused on finding out why the treatment fails in some instances, and he's determined to progress immunotherapy's success rate from the 20 to 40 percent rate he says he sees it at now to 100 percent.

"We've got all the basic tools, and we know what the main issues are," Allison says. "There's still a lot to do, but we need to be smart and do fact-based and mechanism-based combinations."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Axiom Space taps solar array developer for first space station module

space contract

Houston-based Axiom Space is making progress on developing its commercial space station.

The company awarded Florida-based Redwire Corporation a contract to develop and deliver roll-out solar array (ROSA) wings to power the Axiom Payload Power Thermal Module (AxPPTM), which will be the first module for the new space station.

AxPPTM will initially attach to the International Space Station. AxPPTM will later separate from the ISS and rendezvous with Axiom’s Habitat 1 (AxH1) on orbit. Eventually, an airlock, Habitat 2 (AxH2) and finally the Research and Manufacturing Facility (AxRMF) will be added to the first two Axiom modules.

AxPPTM is anticipated to launch toward the end of 2027. The two-module station (AxPPTM and AxH1) is expected to be operational as a free-flying station by 2028, and the full four-module station around 2030.

The modules will be integrated and assembled at Axiom Space’s Assembly and Integration facility, making them the first human-rated spacecraft built in Houston.

Redwire’s ROSA technology was originally developed for the ISS, according to Space News. It has yielded a 100 percent success rate on on-orbit performance. The technology has also been used on NASA’s Double Asteroid Redirection Test mission, the Maxar-built Power and Propulsion Element for the Artemis Lunar Gateway and Thales Alenia Space’s Space Inspire satellites.

“As a market leader for space power solutions, Redwire is proud to be selected as a strategic supplier to deliver ROSAs for Axiom Space’s first space station module,” Mike Gold, Redwire president of civil and international space, said in a news release. “As NASA and industry take the next steps to build out commercial space stations to maintain U.S. leadership in low-Earth orbit, Redwire continues to be the partner of choice, enabling critical capabilities to ensure on-orbit success.”

Greentown Houston to add new AI lab for energy startups

AI partnership

Greentown Labs has partnered with Shoreless to launch an AI lab within its Houston climatetech incubator.

"Climatetech and energy startups are transforming industries, and AI is a critical tool in that journey," Lawson Gow, Greentown's Head of Houston, said in a news release. "We're excited to bring this new offering to our entrepreneurs and corporate partners to enhance the way they think about reducing costs and emissions across the value chain."

Shoreless, a Houston-based company that enables AI adoption for enterprise systems, will support startups developing solutions for supply-chain optimization and decarbonization. They will offer Greentown members climate sprint sessions that will deliver AI-driven insights to assist companies in reducing Scope 3 emissions, driving new revenue streams and lowering expenses. Additionally, the lab will help companies test their ideas before attempting to scale them globally.

"The future of climatetech is intertwined with the future of AI," Ken Myers, Founder and CEO of Shoreless, said in a news release. "By launching this AI lab with Greentown Labs, we are creating a collaborative ecosystem where innovation can flourish. Our agentic AI is designed to help companies make a real difference, and we are excited to see the groundbreaking solutions that will emerge from this partnership."

Greentown and Shoreless will collaborate on workshops that address industry needs for technical teams, and Shoreless will also work to provide engagement opportunities and tailored workshops for Greentown’s startups and residents. Interested companies can inquire here.

Recently, Greentown Labs also partnered with Los Angeles-based software development firm Nominal to launch the new Industrial Center of Excellence at Greentown's Houston incubator. It also announced a partnership with Houston-based EnergyTech Nexus, which will also open an investor lounge on-site last month. Read more here.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.

Houston medical institutions launch $6M kidney research incubator

NIH funding

Institutions within Houston’s Texas Medical Center have launched the Houston Area Incubator for Kidney, Urologic and Hematologic Research Training (HAI-KUH) program. The incubator will be backed by $6.25 million over five years from the National Institutes of Health and aims to create a training pipeline for researchers.

HAI-KUH will include 58 investigators from Baylor College of Medicine, Texas Children’s Hospital, the University of Texas Health Science Center at Houston, University of Houston, Houston Methodist Research Institute, MD Anderson Cancer Center, Rice University and Texas A&M University Institute of Biosciences and Technology. The program will fund six predoctoral students and six postdoctoral associates. Trainees will receive support in scientific research, professional development and networking.

According to the organizations, Houston has a high burden of kidney diseases, hypertension, sickle cell disease and other nonmalignant hematologic conditions. HAI-KUH will work to improve the health of patients by building a strong scientific workforce that leverages the team's biomedical research resources to develop research skills of students and trainees and prepare them for sustained and impactful careers. The funding comes through the National Institute of Diabetes and Digestive and Kidney Diseases.

The principal investigators of the project include Dr. Alison Bertuch, professor of pediatric oncology and molecular and human genetics at BCM; Peter Doris, professor and director of the Institute of Molecular Medicine Center for Human Genetics at UT Health; and Margaret Goodell, professor and chair of the Department of Molecular and Cellular Biology at Baylor.

“This new award provides unique collaborative training experiences that extend beyond the outstanding kidney, urology, and hematology research going on in the Texas Medical Center,” Doris said in a news release. “In conceiving this award, the National Institute of Diabetes and Digestive and Kidney Diseases envisioned trainee development across the full spectrum of skills required for professional success.”

Jeffrey Rimer, a professor of Chemical Engineering, is a core investigator on the project and program director at UH. Rimer is known for his breakthroughs in using innovative methods in control crystals to help treat malaria and kidney stones. Other co-investigators include Dr. Wolfgang Winkelmeyer (Baylor), Oleh Pochynyuk (UTHealth), Dr. Rose Khavari (Houston Methodist) and Pamela Wenzel (UT Health).

“This new NIH-sponsored training program will enable us to recruit talented students and postdocs to work on these challenging areas of research,” Rimer added in a release.