The question the Houston business community must be able to answer today is “Are we going to be ready for 2035?” Photo via Getty Images

In 1914, Winston Churchill faced a difficult decision. Over two decades before his first term as Prime Minister during World War 2, he oversaw the entire Royal Navy as First Lord of the Admiralty. Shipbuilding technology was rapidly evolving in that era and one of the key questions was whether to use coal or oil as fuel for the large ships in the fleet. Coal was the more proven technology at that point and the British had a strong supply chain across the Empire. Oil was lighter and easier to operate, but the worldwide supply and infrastructure were still limited.

Ultimately Churchill was persuaded by Admiral Jacky Fisher and others to convert the entire fleet to oil. To resolve the supply chain issue, the British government bought a majority stake in Anglo-Persian Oil Company, which became BP. The Royal Navy was possibly the largest consumer of fuel worldwide at the time, so this decision had a major effect on the energy transition in that era. Within 30 years, steam engines were no longer used for transportation in most of the world.

In that same decade, Houston emerged as a leading energy hub in the United States: Humble Oil was founded, the Houston Ship Channel was dredged, and the Baytown Refinery was constructed. World War I in Europe, and the mass adoption of cars in the US spurred a major increase in demand for oil. Oil went on to dominate the global energy market, providing cheap and reliable transportation, industrial production, and materials. Houston grew and prospered along with it to become the 5th largest metro area in the country today.

Over a century later, the global energy industry may be at a similar inflection point. According to IEA, the electric vehicle market more than tripled from 4 percent in 2020 to 9 percent in 2021 to 14 percent in 2022. Major automakers like GM, Ford, Volkswagen, Mercedes, and Volvo have pledged to become all-electric by early-to-mid 2030s. Similar commitments are being made in commercial trucking and shipping.

At the same time, the electric power grids in the United States and many other nations are undergoing a rapid shift to renewable energy. Lazard’s annual Levelized Cost of Energy (LCOE) report showed that by 2015, wind and utility-scale solar power in the US were cheaper than all other technologies on a $/MWh basis; the gap has only grown wider since. EIA data on new power generation capacity in the US for 2020-2023 shows that solar, wind, and energy storage combined have ranged from 74 percent to 81 percent while natural gas has ranged from 14 percent to 22 percent and other fuels less than 5 percent.

All of these figures show market trends that are already happening, not projections of what may happen if the technologies improve. This leads to a natural question: will the growth of EVs and renewable energy reach a limit and tail off? Or will this trend continue until the internal combustion engine and fossil fuel power are replaced like steam engines were before? Both EVs and renewable energy are experiencing insatiable market demand in developed markets but have hit other barriers such as supply chain and infrastructure. However, just as the oil industry itself demonstrated in the past, those constraints can be overcome if the push is strong enough.

The year 2035, only 12 years away, is a major deadline for the transition. The US government and the EU have both set it as a target to complete the transition to EVs. In the US electric power industry, BloombergNEF projects that 126 GW of US coal power will retire before then. S&P also forecasts 85 GW of new energy storage will be online, which will help resolve intermittency and transmission issues that have limited the role of renewable energy up to now. That paints a picture of a radically different energy industry from the one we see today; one with oil demand at a fraction of its current levels and natural gas demand in rapid decline as well.

These market trends have drawn a variety of responses in Houston and other energy hubs, ranging from enthusiastic adoption to cautious skepticism to firm denial. Two recent examples of this range are BP CEO Bernard Looney advocating for continued investment in renewable energy and Shell CEO Wael Sawan emphasizing a move away from them due to lower returns. Business leaders should always be aware of threats to their long-term operations, regardless of their personal opinions on an issue. While demand for oil generally remains strong, every business in the energy industry should be prepared for the scenario that all new cars sold in a decade are electric. There is a graveyard of companies like Kodak, Sears, and Blockbuster Video that failed to act on an existential market threat until it was too late.

Plans for the transition can look different from company to company, but Houston is full of resources that can help with planning and deployment. The workforce, financial sector, and professional services can adapt to new energy technologies from their existing oil and gas expertise. Industry organizations like the Houston Energy Transition Initiative, Renewable Energy Alliance Houston, and the energy policy centers at Rice University and the University of Houston can help leaders make connections and discuss new technologies.

The burden is on every business leader to make use of the time remaining, not only to make plans for the changes coming in the energy industry, but to implement those plans. The question the Houston business community must be able to answer today is “Are we going to be ready for 2035?”

------

Drew Philpot is president of Blended Power, a renewable energy consulting practice based in Houston. This article originally ran on EnergyCapital.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

MD Anderson makes AI partnership to advance precision oncology

AI Oncology

Few experts will disagree that data-driven medicine is one of the most certain ways forward for our health. However, actually adopting it comes at a steep curve. But what if using the technology were democratized?

This is the question that SOPHiA GENETICS has been seeking to answer since 2011 with its universal AI platform, SOPHiA DDM. The cloud-native system analyzes and interprets complex health care data across technologies and institutions, allowing hospitals and clinicians to gain clinically actionable insights faster and at scale.

The University of Texas MD Anderson Cancer Center has just announced its official collaboration with SOPHiA GENETICS to accelerate breakthroughs in precision oncology. Together, they are developing a novel sequencing oncology test, as well as creating several programs targeted at the research and development of additional technology.

That technology will allow the hospital to develop new ways to chart the growth and changes of tumors in real time, pick the best clinical trials and medications for patients and make genomic testing more reliable. Shashikant Kulkarni, deputy division head for Molecular Pathology, and Dr. J. Bryan, assistant professor, will lead the collaboration on MD Anderson’s end.

“Cancer research has evolved rapidly, and we have more health data available than ever before. Our collaboration with SOPHiA GENETICS reflects how our lab is evolving and integrating advanced analytics and AI to better interpret complex molecular information,” Dr. Donna Hansel, division head of Pathology and Laboratory Medicine at MD Anderson, said in a press release. “This collaboration will expand our ability to translate high-dimensional data into insights that can meaningfully advance research and precision oncology.”

SOPHiA GENETICS is based in Switzerland and France, and has its U.S. offices in Boston.

“This collaboration with MD Anderson amplifies our shared ambition to push the boundaries of what is possible in cancer research,” Dr. Philippe Menu, chief product officer and chief medical officer at SOPHiA GENETICS, added in the release. “With SOPHiA DDM as a unifying analytical layer, we are enabling new discoveries, accelerating breakthroughs in precision oncology and, most importantly, enabling patients around the globe to benefit from these innovations by bringing leading technologies to all geographies quickly and at scale.”

Houston company plans lunar mission to test clean energy resource

lunar power

Houston-based natural resource and lunar development company Black Moon Energy Corporation (BMEC) announced that it is planning a robotic mission to the surface of the moon within the next five years.

The company has engaged NASA’s Jet Propulsion Laboratory (JPL) and Caltech to carry out the mission’s robotic systems, scientific instrumentation, data acquisition and mission operations. Black Moon will lead mission management, resource-assessment strategy and large-scale operations planning.

The goal of the year-long expedition will be to gather data and perform operations to determine the feasibility of a lunar Helium-3 supply chain. Helium-3 is abundant on the surface of the moon, but extremely rare on Earth. BMEC believes it could be a solution to the world's accelerating energy challenges.

Helium-3 fusion releases 4 million times more energy than the combustion of fossil fuels and four times more energy than traditional nuclear fission in a “clean” manner with no primary radioactive products or environmental issues, according to BMEC. Additionally, the company estimates that there is enough lunar Helium-3 to power humanity for thousands of years.

"By combining Black Moon's expertise in resource development with JPL and Caltech's renowned scientific and engineering capabilities, we are building the knowledge base required to power a new era of clean, abundant, and affordable energy for the entire planet," David Warden, CEO of BMEC, said in a news release.

The company says that information gathered from the planned lunar mission will support potential applications in fusion power generation, national security systems, quantum computing, radiation detection, medical imaging and cryogenic technologies.

Black Moon Energy was founded in 2022 by David Warden, Leroy Chiao, Peter Jones and Dan Warden. Chiao served as a NASA astronaut for 15 years. The other founders have held positions at Rice University, Schlumberger, BP and other major energy space organizations.

Houston co. makes breakthrough in clean carbon fiber manufacturing

Future of Fiber

Houston-based Mars Materials has made a breakthrough in turning stored carbon dioxide into everyday products.

In partnership with the Textile Innovation Engine of North Carolina and North Carolina State University, Mars Materials turned its CO2-derived product into a high-quality raw material for producing carbon fiber, according to a news release. According to the company, the product works "exactly like" the traditional chemical used to create carbon fiber that is derived from oil and coal.

Testing showed the end product met the high standards required for high-performance carbon fiber. Carbon fiber finds its way into aircraft, missile components, drones, racecars, golf clubs, snowboards, bridges, X-ray equipment, prosthetics, wind turbine blades and more.

The successful test “keeps a promise we made to our investors and the industry,” Aaron Fitzgerald, co-founder and CEO of Mars Materials, said in the release. “We proved we can make carbon fiber from the air without losing any quality.”

“Just as we did with our water-soluble polymers, getting it right on the first try allows us to move faster,” Fitzgerald adds. “We can now focus on scaling up production to accelerate bringing manufacturing of this critical material back to the U.S.”

Mars Materials, founded in 2019, converts captured carbon into resources, such as carbon fiber and wastewater treatment chemicals. Investors include Untapped Capital, Prithvi Ventures, Climate Capital Collective, Overlap Holdings, BlackTech Capital, Jonathan Azoff, Nate Salpeter and Brian Andrés Helmick.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.