The question the Houston business community must be able to answer today is “Are we going to be ready for 2035?” Photo via Getty Images

In 1914, Winston Churchill faced a difficult decision. Over two decades before his first term as Prime Minister during World War 2, he oversaw the entire Royal Navy as First Lord of the Admiralty. Shipbuilding technology was rapidly evolving in that era and one of the key questions was whether to use coal or oil as fuel for the large ships in the fleet. Coal was the more proven technology at that point and the British had a strong supply chain across the Empire. Oil was lighter and easier to operate, but the worldwide supply and infrastructure were still limited.

Ultimately Churchill was persuaded by Admiral Jacky Fisher and others to convert the entire fleet to oil. To resolve the supply chain issue, the British government bought a majority stake in Anglo-Persian Oil Company, which became BP. The Royal Navy was possibly the largest consumer of fuel worldwide at the time, so this decision had a major effect on the energy transition in that era. Within 30 years, steam engines were no longer used for transportation in most of the world.

In that same decade, Houston emerged as a leading energy hub in the United States: Humble Oil was founded, the Houston Ship Channel was dredged, and the Baytown Refinery was constructed. World War I in Europe, and the mass adoption of cars in the US spurred a major increase in demand for oil. Oil went on to dominate the global energy market, providing cheap and reliable transportation, industrial production, and materials. Houston grew and prospered along with it to become the 5th largest metro area in the country today.

Over a century later, the global energy industry may be at a similar inflection point. According to IEA, the electric vehicle market more than tripled from 4 percent in 2020 to 9 percent in 2021 to 14 percent in 2022. Major automakers like GM, Ford, Volkswagen, Mercedes, and Volvo have pledged to become all-electric by early-to-mid 2030s. Similar commitments are being made in commercial trucking and shipping.

At the same time, the electric power grids in the United States and many other nations are undergoing a rapid shift to renewable energy. Lazard’s annual Levelized Cost of Energy (LCOE) report showed that by 2015, wind and utility-scale solar power in the US were cheaper than all other technologies on a $/MWh basis; the gap has only grown wider since. EIA data on new power generation capacity in the US for 2020-2023 shows that solar, wind, and energy storage combined have ranged from 74 percent to 81 percent while natural gas has ranged from 14 percent to 22 percent and other fuels less than 5 percent.

All of these figures show market trends that are already happening, not projections of what may happen if the technologies improve. This leads to a natural question: will the growth of EVs and renewable energy reach a limit and tail off? Or will this trend continue until the internal combustion engine and fossil fuel power are replaced like steam engines were before? Both EVs and renewable energy are experiencing insatiable market demand in developed markets but have hit other barriers such as supply chain and infrastructure. However, just as the oil industry itself demonstrated in the past, those constraints can be overcome if the push is strong enough.

The year 2035, only 12 years away, is a major deadline for the transition. The US government and the EU have both set it as a target to complete the transition to EVs. In the US electric power industry, BloombergNEF projects that 126 GW of US coal power will retire before then. S&P also forecasts 85 GW of new energy storage will be online, which will help resolve intermittency and transmission issues that have limited the role of renewable energy up to now. That paints a picture of a radically different energy industry from the one we see today; one with oil demand at a fraction of its current levels and natural gas demand in rapid decline as well.

These market trends have drawn a variety of responses in Houston and other energy hubs, ranging from enthusiastic adoption to cautious skepticism to firm denial. Two recent examples of this range are BP CEO Bernard Looney advocating for continued investment in renewable energy and Shell CEO Wael Sawan emphasizing a move away from them due to lower returns. Business leaders should always be aware of threats to their long-term operations, regardless of their personal opinions on an issue. While demand for oil generally remains strong, every business in the energy industry should be prepared for the scenario that all new cars sold in a decade are electric. There is a graveyard of companies like Kodak, Sears, and Blockbuster Video that failed to act on an existential market threat until it was too late.

Plans for the transition can look different from company to company, but Houston is full of resources that can help with planning and deployment. The workforce, financial sector, and professional services can adapt to new energy technologies from their existing oil and gas expertise. Industry organizations like the Houston Energy Transition Initiative, Renewable Energy Alliance Houston, and the energy policy centers at Rice University and the University of Houston can help leaders make connections and discuss new technologies.

The burden is on every business leader to make use of the time remaining, not only to make plans for the changes coming in the energy industry, but to implement those plans. The question the Houston business community must be able to answer today is “Are we going to be ready for 2035?”

------

Drew Philpot is president of Blended Power, a renewable energy consulting practice based in Houston. This article originally ran on EnergyCapital.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston-based HPE wins $931M contract to upgrade military data centers

defense data centers

Hewlett Packard Enterprise (HPE), based in Spring, Texas, which provides AI, cloud, and networking products and services, has received a $931 million contract to modernize data centers run by the federal Defense Information Systems Agency.

HPE says it will supply distributed hybrid multicloud technology to the federal agency, which provides combat support for U.S. troops. The project will feature HPE’s Private Cloud Enterprise and GreenLake offerings. It will allow DISA to scale and accelerate communications, improve AI and data analytics, boost IT efficiencies, reduce costs and more, according to a news release from HPE.

The contract comes after the completion of HPE’s test of distributed hybrid multicloud technology at Defense Information Systems Agency (DISA) data centers in Mechanicsburg, Pennsylvania, and Ogden, Utah. This technology is aimed at managing DISA’s IT infrastructure and resources across public and private clouds through one hybrid multicloud platform, according to Data Center Dynamics.

Fidelma Russo, executive vice president and general manager of hybrid cloud at HPE, said in a news release that the project will enable DISA to “deliver innovative, future-ready managed services to the agencies it supports that are operating across the globe.”

The platform being developed for DISA “is designed to mirror the look and feel of a public cloud, replicating many of the key features” offered by cloud computing businesses such as Amazon Web Services (AWS), Microsoft Azure and Google Cloud Platform, according to The Register.

In the 1990s, DISA consolidated 194 data centers into 16. According to The Register, these are the U.S. military’s most sensitive data centers.

More recently, in 2024, the Fort Meade, Maryland-based agency laid out a five-year strategy to “simplify the network globally with large-scale adoption of command IT environments,” according to Data Center Dynamics.

Astros and Rockets launch new streaming service for Houston sports fans

Sports Talk

Houston sports fans now have a way to watch their favorite teams without a cable or satellite subscription. Launched December 3, the Space City Home Network’s SCHN+ service allows consumers to watch the Houston Astros and Houston Rockets via iOS, Apple TV, Android, Amazon Fire TV, or web browser.

A subscription to SCHN+ allows sports fans to watch all Astros and Rockets games, as well as behind-the-scenes features and other on-demand content. It’s priced at $19.99 per month or $199.99 annually (plus tax). People who watch Space City Network Network via their existing cable or satellite service will be able to access SCHN+ at no additional charge.

As the Houston Chronicle notes, the Astros and Rockets were the only MLB and NBA teams not to offer a direct-to-consumer streaming option.

“We’re thrilled to offer another great option to ensure fans have access to watch games, and the SCHN+ streaming app makes it easier than ever to cheer on the Rockets,” Rockets alternate governor Patrick Fertitta said in a statement.

“Providing fans with a convenient way to watch their favorite teams, along with our network’s award-winning programming, was an essential addition. This season feels special, and we’re committed to exploring new ways to elevate our broadcasts for Rockets fans to enjoy.”

Astros owner Jim Crane echoed Feritta’s comments, adding, “Providing fans options on how they view our games is important as we continue to grow the game – we want to make it accessible to as large an audience as possible. We are looking forward to the 2026 season and more Astros fans watching our players compete for another championship.”

SCHN+ is available to customers in Texas; Louisiana; Arkansas; Oklahoma; and the following counties in New Mexico: Dona Ana, Eddy, Lea, Chaves, Roosevelt, Curry, Quay, Union, and Debaca. Fans outside these areas will need to subscribe to the NBA and MLB out-of-market services.

---

This article originally appeared on CultureMap.com.

Rice University researchers unveil new model that could sharpen MRI scans

MRI innovation

Researchers at Rice University, in collaboration with Oak Ridge National Laboratory, have developed a new model that could lead to sharper imaging and safer diagnostics using magnetic resonance imaging, or MRI.

In a study recently published in The Journal of Chemical Physics, the team of researchers showed how they used the Fokker-Planck equation to better understand how water molecules respond to contrast agents in a process known as “relaxation.” Previous models only approximated how water molecules relaxed around contrasting agents. However, through this new model, known as the NMR eigenmodes framework, the research team has uncovered the “full physical equations” to explain the process.

“The concept is similar to how a musical chord consists of many notes,” Thiago Pinheiro, the study’s first author, a Rice doctoral graduate in chemical and biomolecular engineering and postdoctoral researcher in the chemical sciences division at Oak Ridge National Laboratory, said in a news release. “Previous models only captured one or two notes, while ours picks up the full harmony.”

According to Rice, the findings could lead to the development and application of new contrast agents for clearer MRIs in medicine and materials science. Beyond MRIs, the NMR relaxation method could also be applied to other areas like battery design and subsurface fluid flow.

“In the present paper, we developed a comprehensive theory to interpret those previous molecular dynamics simulations and experimental findings,” Dilipkumar Asthagiri, a senior computational biomedical scientist in the National Center for Computational Sciences at Oak Ridge National Laboratory, said in the release. ”The theory, however, is general and can be used to understand NMR relaxation in liquids broadly.”

The team has also made its code available as open source to encourage its adoption and further development by the broader scientific community.

“By better modeling the physics of nuclear magnetic resonance relaxation in liquids, we gain a tool that doesn’t just predict but also explains the phenomenon,” Walter Chapman, a professor of chemical and biomolecular engineering at Rice, added in the release. “That is crucial when lives and technologies depend on accurate scientific understanding.”

The study was backed by The Ken Kennedy Institute, Rice Creative Ventures Fund, Robert A. Welch Foundation and Oak Ridge Leadership Computing Facility at Oak Ridge National Laboratory.