Houston-based BioTex works with medical device and health tech companies from all stages, from R&D to commercialization. Photo via biotexmedical.com

Founding a health tech company is a process unlike any other startup. From the regulatory phase to clinical trials, health tech innovators face a long runway from idea to market, but a Houston-based organization has been working for over 20 years to help make that take-off process run more smoothly.

Ashok Gowda founded BioTex Inc. in 1998, and at the time he was finishing up his PhD at Texas A&M University and wanted a company to support his own health tech ideas, including Visualase Inc. After the real-time tissue monitoring system exited to Medtronic for over $100 million, Gowda realized he can put everything he had learned from taking Visualase from idea to exit and apply it to new medical device innovation.

"Ultimately we built a nice infrastructure by supporting (the Visualase) spin out," Gowda tells InnovationMap. "And we learned a lot about not just product development, but about commercializing and creating a new market that may not exist. And we had some really good, experienced commercial folks we had hired on the Visualase side. I just think it's a good learning lesson that you can't really teach this stuff — you gotta experience it really to understand."

At this point, BioTex has worked with over 40 medical device and health tech companies in some capacity — from early prototyping and research and development to FDA approval, manufacturing, and even distribution. With a staff of around 50 and an 18,000-square-foot facility just south of the Texas Medical Center, BioTex can support around 10 to 15 clients at a time — usually in the medical device sector but across specialties from neurosurgery, cardiology, radiology, urology, gynecology, orthopedics, anesthesia, and more.

BioTex has an 18,000-square-foot facility just south of the Texas Medical Center with R&D space for its clients. Photo via biotexmedical.com

"It's a pretty broad experience, and I think it gives us a good perspective when we talk to a physician or a group of entrepreneurs — we can pretty easily get up to speed or understand the problem because we've usually worked in this space before," Gowda says.

With the infrastructure BioTex has in place, Gowda says he still sees one aspect of health tech development that needs more attention.

"There are obviously a lot of really good ideas here and a lot of push to try to get those ideas to market. But, there are very few of those that have gotten to market and to become commercial products," Gowda says. "It does require a lot of capital to bring medical technology to market — and it usually requires a lot of time as well."

Health tech founders facing the long runway of development usually need enough funds to support them through the process — as well as the know how and support BioTex has.

"We think we solve few of these problems with our in-house expertise, but the one that we are now focused on and trying to solve is the funding gap," Gowda says. "When we see a good idea or a technology, we want to help them get that to market and not let that lack of funding be an impediment."

Ashok Gowda is the president and CEO of BioTex. Photo via biotexmedical.com

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

United breaks ground on $177 million facility and opens tech center at IAH

off the ground

United Airlines announced new infrastructure investments at George Bush Intercontinental Airport as part of the company’s ongoing $3.5 billion investment into IAH.

United broke ground on a new $177 million Ground Service Equipment (GSE) Maintenance Facility this week that will open in 2027.

The 140,000-square-foot GSE facility will support over 1,800 ground service vehicles and with expansive repair space, shop space and storage capacity. The GSE facility will also be targeted for LEED Silver certification. United believes this will provide more resources to assist with charging batteries, fabricating metal and monitoring electronic controls with improved infrastructure and modern workspaces.

Additionally, the company opened its new $16 million Technical Operations Training Center.

The center will include specialized areas for United's growing fleet, and advanced simulation technology that includes scenario-based engine maintenance and inspection training. By 2032, the Training Center will accept delivery of new planes. This 91,000-square-foot facility will include sheet metal and composite training shops as well.

The Training Center will also house a $6.3 million Move Team Facility, which is designed to centralize United's Super Tug operations. United’s IAH Move Team manages over 15 Super Tugs across the airfield, which assist with moving hundreds of aircraft to support flight departures, remote parking areas, and Technical Operations Hangars.

The company says it plans to introduce more than 500 new aircraft into its fleet, and increase the total number of available seats per domestic departure by nearly 30%. United also hopes to reduce carbon emissions per seat and create more unionized jobs by 2026.

"With these new facilities, Ground Service Equipment Maintenance Facility and the Technical Operations Training Center, we are enhancing our ability to maintain a world-class fleet while empowering our employees with cutting-edge tools and training,” Phil Griffith, United's Vice President of Airport Operations, said in a news release. “This investment reflects our long-term vision for Houston as a critical hub for United's operations and our commitment to sustainability, efficiency, and growth."

UH study uncovers sustainable farming methods for hemp production

growth plan

A new University of Houston study of hemp microbes can potentially assist scientists in creating special mixtures of microbes to make hemp plants produce more CBD or have better-quality fibers.

The study, led by Abdul Latif Khan, an assistant professor of biotechnology at the Cullen College of Engineering Technology Division, was published in the journal Scientific Reports from the Nature Publishing Group. The team also included Venkatesh Balan, UH associate professor of biotechnology at the Cullen College of Engineering Technology Division; Aruna Weerasooriya, professor of medicinal plants at Prairie View A&M University; and Ram Ray, professor of agronomy at Prairie View A&M University.

The study examined microbiomes living in and around the roots (rhizosphere) and on the leaves (phyllosphere) of four types of hemp plants. The team at UH compared how these microorganisms differ between hemp grown for fiber and hemp grown for CBD production.

“In hemp, the microbiome is important in terms of optimizing the production of CBD and enhancing the quality of fiber,” Khan said in a news release. “This work explains how different genotypes of hemp harbor microbial communities to live inside and contribute to such processes. We showed how different types of hemp plants have their own special groups of tiny living microbes that help the plants grow and stay healthy.”

The study indicates that hemp cultivation can be improved by better understanding these distinct microbial communities, which impact growth, nutrient absorption, stress resilience, synthesis and more. This could help decrease the need for chemical inputs and allow growers to use more sustainable agricultural practices.

“Understanding these microorganisms can also lead to more sustainable farming methods, using nature to boost plant growth instead of relying heavily on chemicals,” Ahmad, the paper’s first author and doctoral student of Khan’s, said the news release.

Other findings in the study included higher fungal diversity in leaves and stems, higher bacterial diversity in roots and soil, and differing microbiome diversity. According to UH, CBD-rich varieties are currently in high demand for pharmaceutical products, and fiber-rich varieties are used in industrial applications like textiles.