Rice researchers are cleaning up when it comes to grants and competitions. Photo via Rice.edu

Undergraduate students from Rice University were awarded the top prize in a health innovation challenge.

Design by Biomedical Undergraduate Teams (DEBUT) Challenge, which is organized by the National Institutes of Health (NIH) and the non-profit organization VentureWell, selected medical device team UroFlo as its winner, claiming the $20,000 prize. The technology, a continuous bladder irrigation system, was recognized for its potential to revolutionize post-operative care and improve patient outcomes.

The winning team from Rice consists of 2024 bioengineering graduates Anushka Agrawal, Sahana Prasanna, Robert Heeter, Archit Chabbi, Kevin Li, and Richard Chan. The UroFlo system provides care to patients after surgery and reduces the burden on health care professionals by implementing state-of-the-art sensors and machine learning algorithms with a touchscreen user interface. This helps with data collection, processing and visualization. UroFlo promises to enhance the management of urinary tract infections (UTIs) and help prevent blood clots.

“We have learned so much from this process and we are really proud of what we have accomplished,” says Chabbi in a news release. “It’s truly rewarding to know that our work can impact patients’ experience and help improve quality of care. Over the many hours we spent working in the Oshman Engineering Design Kitchen (OEDK) at Rice, we’ve not only developed an amazing set of skills, but have also forged really strong connections with one-another and the nearby medical community at the Texas Medical Center.”

The award will be presented on Oct. 25 in Baltimore during the annual Biomedical Engineering Society (BMES) conference.

UroFlo was also with first place in the Johns Hopkins Healthcare Design Competition in the Post-Surgical Infection Management category; first place in the American Society for Artificial Internal Organs Student Design Competition; “Best Medical Device Technology Award” in the 2024 Huff Engineering Design Showcase and competition held by the OEDK; “Outstanding Bioengineering Design Project,” Rice Department of Bioengineering; “Best Presentation” in the Texas Children’s Hospital Surgical Research Day; finalist and “Best Engineering Project” in Rice’s 2024 Shapiro Research Showcases; and semi-finalist in the H. Albert Napier Rice Launch Challenge. UroFlo will continue after Rice, as the project will be developed further.

“We are all very passionate about biomedical engineering, and dedicated and committed to making a difference” Chan said in a news release. “We actually decided to continue to develop UroFlo after our graduation from Rice a few months ago with the hope of improving our innovative solution for urological care.”

In other news, Rice University’s Naomi Halas won $7.5 million over five years from the United States Department of Defense (DOD) Air Force Office of Scientific Research (AFOSR) with her project proposal Multidisciplinary University Research Initiative (MURI) for her project titled “Combining Nonequilibrium Chemistries with Atomic Precision,” which competed in the category “plasmon-controlled single-atom catalysis.”

“Combining Nonequilibrium Chemistries with Atomic Precision” addressed the need for more energy-efficient and less protocol-intensive chemical processes that involve using light to drive chemical reactions and single-atom “reactors” to catalyze chemical reactions that are nearly 100 percent specific in terms of reaction products.

Plasmons work when they make metal nanoparticles act like antennas, and certain designed reactor sites on their surfaces can then carry out chemical reactions at a fraction of the “energy expenditure of conventional industrial catalysts” according to a news release.

Rice University and Baylor College of Medicine have also received $2.8 million in funding from the National Heart, Lung, and Blood Institute (NHLBI) for their research on reducing inflammation and lung damage in acute respiratory distress syndrome (ARDS) patients.

“Cell Based Immunomodulation to Suppress Lung Inflammation and Promote Repair,” will be co-led byRice’s Omid Veiseh, a professor of bioengineering and faculty director of the Rice Biotech Launch Pad, and professor of surgery at Baylor Ravi Kiran Ghanta. They will develop a new translational cell therapy platform “ to allow a better local administration of cytokines to the lungs in order to suppress inflammation and potentially prevent lung damage in ARDS patients” according to a news release.

These four medical research projects are ones to watch in Houston. Getty Images

These are 4 medical innovations coming out of Houston institutions

Research roundup

Houston — home to one of the largest medical centers in the world — isn't a stranger when it comes to medical innovations and breakthrough research discoveries.

In the latest roundup of research innovations, four Houston institutions are working on innovative and — in some cases — life-saving research projects.

Houston Methodist study observes that strep throat germ is becoming resistant to antibiotics 

If the germ, group A streptococcus, continues to grow resistant to antibiotics, it can have a profoundly negative affect on the millions who get the illness annually. Photo via houstonmethodist.org

Researchers at Houston Methodist have discovered some troubling information about the strains of group A streptococcus that cause strep throat and a flesh-eating disease are becoming more resistant to beta-lactams antibiotics like penicillin.

James M. Musser is the lead author of the study and chair of Methodist's Department of Pathology and Genomic Medicine. The study — which received funding from grants from the Fondren Foundation, Houston Methodist Hospital and Houston Methodist Research Institute, and the National Institutes of Health — appeared in the Jan. 29 issue of the Journal of Clinical Microbiology, according to a news release.

"If this germ becomes truly resistant to these antibiotics, it would have a very serious impact on millions of children around the world," Musser says in the release. "That is a very concerning but plausible notion based on our findings. Development of resistance to beta-lactam antibiotics would have a major public health impact globally."

Musser and his team found 7,025 group A streptococcus strains that have been recorded around the world over the past several decades. Of those strains, 2 percent had gene mutations that raised the alarm for the researchers and, upon investigation, Musser's team came to the conclusion that antibiotic treatments can eventually be less effective — or even completely ineffective. This, Musser says, calls for an urgent need to develop a vaccine.

"We could be looking at a worldwide public health infectious disease problem," says Musser in the release. "When strep throat doesn't respond to frontline antibiotics such as penicillin, physicians must start prescribing second-line therapies, which may not be as effective against this organism."

University of Houston professor is searching for a way to stop persistent cells that cause chronic infections

University of Houston Professor Mehmet Orman is looking into cells that are able to persist and cause chronic illnesses. Photo via uh.edu

Mehmet Orman, assistant professor of chemical and biomolecular engineering at the University of Houston, is looking into a specific type of persister cells that have been found to be stubborn and drug-resistant.

The research, which is backed by a $1.9 million grant from the National Institute of Allergy and Infectious Diseases, could answer questions about chronic health issues like airway infections in cystic fibrosis patients, urinary tract infections, and tuberculosis, according to a news release.

"If we know how persister cells are formed, we can target their formation mechanisms to eliminate these dangerous cell types," says Orman in a news release.

Orman is looking into cells' self-digestion, or autophagy, process that is found to stimulate persister formation. Per the release, cells can survive periods of starvation by eating their own elements. Specifically, Orman will analyze self-digestion in E. coli.

"By integrating our expertise in bacterial cell biology with advanced current technologies, we aim to decipher the key components of this pathway to provide a clear and much-needed picture of bacterial self-digestion mechanisms," says Orman in the release.

Baylor College of Medicine is working to understand and prevent post-op kidney failure

operation

Some patients are predisposed to kidney injury following surgery, this study found. Photo via bcm.edu

Scientists at Baylor College of Medicine are looking into the lead cause of kidney failure in patients who undergo surgery. Individuals who have heightened levels of suPAR protein — soluble urokinase-type plasminogen activator receptor — have a greater risk of this post-op complication, according to a news release.

"suPAR is a circulating protein that is released by inflammatory cells in the bone marrow and produced by a number of cell/organs in the body," says Dr. David Sheikh-Hamad, professor of medicine – nephrology at Baylor College of Medicine and collaborating author of the study, in the release.

The study, which was published in The New England Journal of Medicine, conducted research on mice that were engineered to hive high suPAR levels in their blood. Compared to the control mice, the suPAR mice had more risk of kidney industry. These mice were given suPAR-blocking antibodies, which then helped reduce kidney injury.

"This protective strategy may be used in humans expressing high suPAR levels prior to contrast exposure, or surgery to decrease the likelihood of developing kidney failure," Sheikh-Hamad says in the release.

Rice University research finds expressing emotions during mourning is healthier

Christopher Fagundes of Rice University analyzed the emotions of 99 widows and widowers. Jeff Fitlow/Rice University

A new study done by researchers at Rice University finds that spouses that lose their husband or wife and try to suppress their grief are not doing themselves any favors. The study monitored 99 people who had recently lost a spouse, according to a news release.

"There has been work focused on the link between emotion regulation and health after romantic breakups, which shows that distracting oneself from thoughts of the loss may be helpful," says Christopher Fagundes, an associate professor of psychology and the principal investigator, in a news release. "However, the death of a spouse is a very different experience because neither person initiated the separation or can attempt to repair the relationship."

The study included asking participants to respond to how they felt about certain coping strategies, as well as blood tests to measure cytokines levels‚ an inflammatory marker.

"Bodily inflammation is linked to a host of negative health conditions, including serious cardiovascular issues like stroke and heart attack," Fagundes says in the release.

The research, which was funded by a grant from the National Heart, Lung, and Blood Institute, found that the participants who avoided their emotions suffered more of this bodily inflammation.

"The research also suggests that not all coping strategies are created equal, and that some strategies can backfire and have harmful effects, especially in populations experiencing particularly intense emotions in the face of significant life stressors, such as losing a loved one," adss Richard Lopez, an assistant professor of psychology at Bard College and lead author of the study, in the release.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

World's largest student startup competition names teams for 2025 Houston event

ready, set, pitch

The Rice Alliance for Technology and Entrepreneurship has announced the 42 student-led teams worldwide that will compete in the 25th annual Rice Business Plan Competition this spring.

The highly competitive event, known as one of the world’s largest and richest intercollegiate student startup challenges, will take place April 10–12 at Houston's The Ion. Teams in this year's competition represent 34 universities from four countries, including one team from Rice.

Graduate student-led teams from colleges or universities around the world will present their plans before more than 300 angel, venture capital, and corporate investors to compete for more than $1 million in prizes. Last year, top teams were awarded $1.5 million in investment and cash prizes.

The 2025 invitees include:

  • 3rd-i, University of Miami
  • AG3 Labs, Michigan State University
  • Arcticedge Technologies, University of Waterloo
  • Ark Health, University of Chicago
  • Automatic AI, University of Mississippi and University of New Orleans
  • Bobica Bars, Rowan University
  • Carbon Salary, Washington University in St. Louis
  • Carmine Minerals, California State University, San Bernardino
  • Celal-Mex, Monterrey Institute of Technology and Higher Education
  • CELLECT Laboratories, University of Waterloo
  • ECHO Solutions, University of Houston
  • EDUrain, University of Missouri-St. Louis
  • Eutrobac, University of California, Santa Cruz
  • FarmSmart.ai, Louisiana State University
  • Fetal Therapy Technologies, Johns Hopkins University
  • GreenLIB Materials, University of Ottawa
  • Humimic Biosystems, University of Arkansas
  • HydroHaul, Harvard University
  • Intero Biosystems, University of Michigan
  • Interplay, University of Missouri-Kansas City
  • MabLab, Harvard University
  • Microvitality, Tufts University
  • Mito Robotics, Carnegie Mellon University
  • Motmot, Michigan State University
  • Mud Rat, University of Connecticut
  • Nanoborne, University of Texas at Austin
  • NerView Surgical, McMaster University
  • NeuroFore, Washington University in St. Louis
  • Novus, Stanford University
  • OAQ, University of Toronto
  • Parthian Baattery Solutions, Columbia University
  • Pattern Materials, Rice University
  • Photon Queue, University of Illinois, Urbana-Champaign
  • re.solution, RWTH Aachen University
  • Rise Media, Yale University
  • Rivulet, University of Cambridge and Dartmouth College
  • Sabana, Carnegie Mellon University
  • SearchOwl, Case Western Reserve University
  • Six Carbons, Indiana University
  • Songscription, Stanford University
  • Watermarked.ai, University of Illinois, Urbana-Champaign
  • Xatoms, University of Toronto

This year's group joins more than 868 RBPC alums that have raised more than $6.1 billion in capital with 59 successful exits, according to the Rice Alliance.

Last year, Harvard's MesaQuantum, which was developing accurate and precise chip-scale clocks, took home the biggest sum of $335,000. While not named as a finalist, the team secured the most funding across a few prizes.

Protein Pints, a high-protein, low-sugar ice cream product from Michigan State University, won first place and the $150,000 GOOSE Capital Investment Grand Prize, as well as other prizes, bringing its total to $251,000.

Tesla recalling more than 375,000 vehicles due to power steering issue

Tesla Talk

Tesla is recalling more than 375,000 vehicles due to a power steering issue.

The recall is for certain 2023 Model 3 and Model Y vehicles operating software prior to 2023.38.4, according to the National Highway Traffic Safety Administration.

The printed circuit board for the electronic power steering assist may become overstressed, causing a loss of power steering assist when the vehicle reaches a stop and then accelerates again, the agency said.

The loss of power could required more effort to control the car by drivers, particularly at low speeds, increasing the risk of a crash.

Tesla isn't aware of any crashes, injuries, or deaths related to the condition.

The electric vehicle maker headed by Elon Musk has released a free software update to address the issue.

Letters are expected to be sent to vehicle owners on March 25. Owners may contact Tesla customer service at 1-877-798-3752 or the NHTSA at 1-888-327-4236.

Houston space tech companies land $25 million from Texas commission

Out Of This World

Two Houston aerospace companies have collectively received $25 million in grants from the Texas Space Commission.

Starlab Space picked up a $15 million grant, and Intuitive Machines gained a $10 million grant, according to a Space Commission news release.

Starlab Space says the money will help it develop the Systems Integration Lab in Webster, which will feature two components — the main lab and a software verification facility. The integration lab will aid creation of Starlab’s commercial space station.

“To ensure the success of our future space missions, we are starting with state-of-the-art testing facilities that will include the closest approximation to the flight environment as possible and allow us to verify requirements and validate the design of the Starlab space station,” Starlab CEO Tim Kopra said in a news release.

Starlab’s grant comes on top of a $217.5 million award from NASA to help eventually transition activity from the soon-to-be-retired International Space Station to new commercial destinations.

Intuitive Machines is a space exploration, infrastructure and services company. Among its projects are a lunar lander designed to land on the moon and a lunar rover designed for astronauts to travel on the moon’s surface.

The grants come from the Space Commission’s Space Exploration and Aeronautics Research Fund, which recently awarded $47.7 million to Texas companies.

Other recipients were:

  • Cedar Park-based Firefly Aerospace, which received $8.2 million
  • Brownsville-based Space Exploration Technologies (SpaceX), which received $7.5 million
  • Van Horn-based Blue Origin, which received $7 million

Gwen Griffin, chair of the commission, says the grants “will support Texas companies as we grow commercial, military, and civil aerospace activity across the state.”

State lawmakers established the commission in 2023, along with the Texas Aerospace Research & Space Economy Consortium, to bolster the state’s space industry.