Fram2, operated by SpaceX, is targeting to launch Monday, March 31. The crew will conduct six TRISH experiments on board. Photo courtesy TRISH.

Houston's Translational Research Institute for Space Health, or TRISH, will send its latest experiments into space aboard the Fram2 mission, the first all-civilian human spaceflight mission to launch over the Earth’s polar regions.

Fram2, operated by SpaceX, is targeting to launch Monday, March 31, at NASA’s Kennedy Space Center in Florida. The crew of four is expected to spend several days in polar orbit aboard the SpaceX Dragon spacecraft in low Earth orbit. TRISH’s research projects are among 22 experiments that the crew will conduct onboard.

The crew's findings will add to TRISH's Enhancing eXploration Platforms and ANalog Definition, or EXPAND, program and will be used to help enhance human health and performance during spaceflight missions, including missions to the moon and Mars, according to a release from TRISH.

“The valuable space health data that will be captured during Fram2 will advance our understanding of how humans respond and adapt to the stressors of space,” Jimmy Wu, TRISH deputy director and chief engineer and assistant professor in Baylor’s Center for Space Medicine, said in the release. “Thanks to the continued interest in furthering space health by commercial space crews, each human health research project sent into orbit brings us closer to improving crew member well-being aboard future spaceflight missions.”

The six TRISH projects on Fram2 include:

  • Cognitive and Physiologic Responses in Commercial Space Crew on Short-Duration Missions, led by Dr. Mathias Basner at the University of Pennsylvania Perelman School of Medicine. The crew will wear a Garmin smartwatch and a BioIntelliSense BioButton® medical grade device to track cognitive performance, including memory, spatial orientation, and attention before, during, and after the mission.
  • Otolith and Posture Evaluation II, led by Mark Shelhamer at Johns Hopkins University. The experiment will look at how astronauts’ eyes sense and respond to motion before and after spaceflight to better understand motion sickness in space.
  • REM and CAD Radiation Monitoring for Private Astronaut Spaceflight, led by Stuart George at NASA Johnson Space Center. This experiment will test space radiation exposure over the Earth’s north and south poles and how this impacts crew members.
  • Space Omics + BioBank, led by Richard Gibbs and Harsha Doddapaneni at Baylor College of Medicine. The experiment will use Baylor’s Human Genome Sequencing Center's Genomic Evaluation of Space Travel and Research program to gain insights from pre-flight and post-flight samples from astronauts.
  • Standardized research questionnaires, led by TRISH. The test asks a set of standardized research questionnaires for the crew to collect data on their sleep, personality, health history, team dynamics and immune-related symptoms.
  • Sensorimotor adaptation, led by TRISH. The project collects data before and after flight to understand sensorimotor abilities, change and recovery time to inform future missions to the moon.

TRISH, which is part of BCM’s Center for Space Medicine with partners Caltech and MIT, has launched experiments on numerous space missions to date, including Blue Origin's New Shepard rocket last November and Axiom Space's Ax-3 mission to the International Space Station last January.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston company plans lunar mission to test clean energy resource

lunar power

Houston-based natural resource and lunar development company Black Moon Energy Corporation (BMEC) announced that it is planning a robotic mission to the surface of the moon within the next five years.

The company has engaged NASA’s Jet Propulsion Laboratory (JPL) and Caltech to carry out the mission’s robotic systems, scientific instrumentation, data acquisition and mission operations. Black Moon will lead mission management, resource-assessment strategy and large-scale operations planning.

The goal of the year-long expedition will be to gather data and perform operations to determine the feasibility of a lunar Helium-3 supply chain. Helium-3 is abundant on the surface of the moon, but extremely rare on Earth. BMEC believes it could be a solution to the world's accelerating energy challenges.

Helium-3 fusion releases 4 million times more energy than the combustion of fossil fuels and four times more energy than traditional nuclear fission in a “clean” manner with no primary radioactive products or environmental issues, according to BMEC. Additionally, the company estimates that there is enough lunar Helium-3 to power humanity for thousands of years.

"By combining Black Moon's expertise in resource development with JPL and Caltech's renowned scientific and engineering capabilities, we are building the knowledge base required to power a new era of clean, abundant, and affordable energy for the entire planet," David Warden, CEO of BMEC, said in a news release.

The company says that information gathered from the planned lunar mission will support potential applications in fusion power generation, national security systems, quantum computing, radiation detection, medical imaging and cryogenic technologies.

Black Moon Energy was founded in 2022 by David Warden, Leroy Chiao, Peter Jones and Dan Warden. Chiao served as a NASA astronaut for 15 years. The other founders have held positions at Rice University, Schlumberger, BP and other major energy space organizations.

Houston co. makes breakthrough in clean carbon fiber manufacturing

Future of Fiber

Houston-based Mars Materials has made a breakthrough in turning stored carbon dioxide into everyday products.

In partnership with the Textile Innovation Engine of North Carolina and North Carolina State University, Mars Materials turned its CO2-derived product into a high-quality raw material for producing carbon fiber, according to a news release. According to the company, the product works "exactly like" the traditional chemical used to create carbon fiber that is derived from oil and coal.

Testing showed the end product met the high standards required for high-performance carbon fiber. Carbon fiber finds its way into aircraft, missile components, drones, racecars, golf clubs, snowboards, bridges, X-ray equipment, prosthetics, wind turbine blades and more.

The successful test “keeps a promise we made to our investors and the industry,” Aaron Fitzgerald, co-founder and CEO of Mars Materials, said in the release. “We proved we can make carbon fiber from the air without losing any quality.”

“Just as we did with our water-soluble polymers, getting it right on the first try allows us to move faster,” Fitzgerald adds. “We can now focus on scaling up production to accelerate bringing manufacturing of this critical material back to the U.S.”

Mars Materials, founded in 2019, converts captured carbon into resources, such as carbon fiber and wastewater treatment chemicals. Investors include Untapped Capital, Prithvi Ventures, Climate Capital Collective, Overlap Holdings, BlackTech Capital, Jonathan Azoff, Nate Salpeter and Brian Andrés Helmick.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.

Rice launches 'brain economy' initiative at World Economic Forum

brain health

Rice University has launched an initiative that will position “brain capital” as a key asset in the 21st century.

Rice rolled out the Global Brain Economy Initiative on Jan. 21 at the World Economic Forum in Davos, Switzerland.

“This initiative positions brain capital, or brain health and brain skills, at the forefront of global economic development, particularly in the age of artificial intelligence,” the university said in a news release.

The Rice-based initiative, whose partners are the University of Texas Medical Branch in Galveston and the Davos Alzheimer’s Collaborative, aligns with a recent World Economic Forum and McKinsey Health Institute report titled “The Human Advantage: Stronger Brains in the Age of AI,” co-authored by Rice researcher Harris Eyre. Eyre is leading the initiative.

“With an aging population and the rapid transformation of work and society driven by AI, the urgency has never been greater to focus on brain health and build adaptable human skills—both to support people and communities and to ensure long-term economic stability,” says Amy Dittmar, a Rice provost and executive vice president for academic affairs.

This initiative works closely with the recently launched Rice Brain Institute.

In its first year, the initiative will establish a global brain research agenda, piloting brain economy strategies in certain regions, and introducing a framework to guide financial backers and leaders. It will also advocate for public policies tied to the brain economy.

The report from the McKinsey Health Institute and World Economic Forum estimates that advancements in brain health could generate $6.2 trillion in economic gains by 2050.

“Stronger brains build stronger societies,” Eyre says. “When we invest in brain health and brain skills, we contribute to long-term growth, resilience, and shared prosperity.”