BrainLM is now well-trained enough to use to fine-tune a specific task and to ask questions in other studies. Photo via Getty Images

Houston researchers are part of a team that has created an AI model intended to understand how brain activity relates to behavior and illness.

Scientists from Baylor College of Medicine worked with peers from Yale University, University of Southern California and Idaho State University to make Brain Language Model, or BrainLM. Their research was published as a conference paper at ICLR 2024, a meeting of some of deep learning’s greatest minds.

“For a long time we’ve known that brain activity is related to a person’s behavior and to a lot of illnesses like seizures or Parkinson’s,” Dr. Chadi Abdallah, associate professor in the Menninger Department of Psychiatry and Behavioral Sciences at Baylor and co-corresponding author of the paper, says in a press release. “Functional brain imaging or functional MRIs allow us to look at brain activity throughout the brain, but we previously couldn’t fully capture the dynamic of these activities in time and space using traditional data analytical tools.

"More recently, people started using machine learning to capture the brain complexity and how it relates it to specific illnesses, but that turned out to require enrolling and fully examining thousands of patients with a particular behavior or illness, a very expensive process,” Abdallah continues.

Using 80,000 brain scans, the team was able to train their model to figure out how brain activities related to one another. Over time, this created the BrainLM brain activity foundational model. BrainLM is now well-trained enough to use to fine-tune a specific task and to ask questions in other studies.

Abdallah said that using BrainLM will cut costs significantly for scientists developing treatments for brain disorders. In clinical trials, it can cost “hundreds of millions of dollars,” he said, to enroll numerous patients and treat them over a significant time period. By using BrainLM, researchers can enroll half the subjects because the AI can select the individuals most likely to benefit.

The team found that BrainLM performed successfully in many different samples. That included predicting depression, anxiety and PTSD severity better than other machine learning tools that do not use generative AI.

“We found that BrainLM is performing very well. It is predicting brain activity in a new sample that was hidden from it during the training as well as doing well with data from new scanners and new population,” Abdallah says. “These impressive results were achieved with scans from 40,000 subjects. We are now working on considerably increasing the training dataset. The stronger the model we can build, the more we can do to assist with patient care, such as developing new treatment for mental illnesses or guiding neurosurgery for seizures or DBS.”

For those suffering from neurological and mental health disorders, BrainLM could be a key to unlocking treatments that will make a life-changing difference.

This week's roundup of Houston innovators includes Abbas Rana of BCM, Rebecca C. Vaught of Van Heron Labs, and Patrick Scateni of Hypertec. Photos courtesy

3 Houston innovators to know this week

who's who

Editor's note: Welcome to another Monday edition of Innovators to Know. Today I'm introducing you to three Houstonians to read up about — three individuals behind recent innovation and startup news stories in Houston as reported by InnovationMap. Learn more about them and their recent news below by clicking on each article.

Abbas Rana, associate professor of surgery at Baylor College of Medicine

The NIH grant goes toward TransplantAI's work developing more precise models for heart and lung transplantation. Photo via BCM

The National Institute of Health has bestowed a Houston medtech company with a $2.2 million Fast-Track to Phase 2 award. InformAI will use the money for the product development and commercialization of its AI-enabled organ transplant informatics platform.

TransplantAI solves that problem, as well as organ scarcity and inefficiency in allocation of the precious resource.

The NIH grant goes toward developing more precise models for heart and lung transplantation (kidney and liver algorithms are further along in development thanks to a previous award from the National Science Foundation), as well as Phase 2 efforts to fully commercialize TransplantAI.

"There is an urgent need for improved and integrated predictive clinical insights in solid organ transplantation, such as for real-time assessment of waitlist mortality and the likelihood of successful post-transplantation outcomes," according to the grant’s lead clinical investigator, Abbas Rana, associate professor of surgery at Baylor College of Medicine. Read more.

Rebecca C. Vaught, founder and CEO of Van Heron Labs

Van Heron Labs, founded at TMC, raised a $1.1 million seed round led by FoodLabs. Photo via LinkedIn

A biotech company that was founded at the Texas Medical Center in Houston has raised fresh funding to support its goal of innovating new technologies for a healthier humanity.

Van Heron Labs, based in Huntsville, Alabama, raised a $1.1 million seed round led by FoodLabs, a European investor and venture studio for food, health, and climate. The startup taps into genomics, bioinformatics, artificial intelligence, and nanotechnology to improve how cells are cultured and harnessed with the mission to address critical industrial and global challenges with biotechnology.

“Van Heron Labs looks forward to using the generous support and funding from FoodLabs to advance our goal of making biological innovation better, faster, and cheaper," Rebecca C. Vaught, founder and CEO of Van Heron Labs, says in a news release. "By fueling the new bio-economy, we feel that our customers can optimize their systems and bring technologies to overcome critical global challenges to market." Read more.

Patrick Scateni, vice president of global sales of Hypertec

The hardware upgrades more than “double the effective horsepower of DUG’s Houston data center.” Photo via LinkedIn

An Australia-based company has launched a major upgrade of its Houston data center with sustainability in mind.

DUG Technology announced it's increased the company’s high performance computing (HPC) capabilities and also reinforced its commitment to sustainable innovative technology. The company announced its latest investment in 1500 new AMD EPYCTM Genoa servers, which has 192 cores and 1.5 terabytes of DDR5 memory each. Quebec-based IT solution company Hypertec provided the immersion-born hardware.

“DUG’s decision highlights the unmatched technological advancements and superior performance of Hypertec immersion-born products, which are setting a new benchmark in the industry,” Hypertec’s Patrick Scateni, vice president of global sales says in a news release. Read more.

TRISH’s Diversity Partnership Solicitation Program selected two research teams to receive funding and support. Photo via BCM.edu

Houston space health organization announces new diversity-focused grant recipients

diversifying space

A local organization announced two newly funded partnerships to advance research and innovation within space health.

The Translational Research Institute for Space Health, or TRISH, at Baylor College of Medicine has announced — along with partner organizations Caltech and the Massachusetts Institute of Technology — $300,000 in funding for teams at Texas State University and the University of Florida.

The two schools have been named awardees of TRISH’s Diversity Partnership Solicitation Program that was founded to support TRISH’s ongoing commitment to increasing engagement from underrepresented groups in the field of space health research.

“We go to space to improve life everywhere, and we must do so representing everyone,” says Dr. Asha S. Collins, chair of TRISH’s Diversity Advisory Board, in a news release. “The members of TRISH’s Diversity Advisory Board helped select two strong partners through our Diversity Partnership Program, and their work will move us closer to achieving that reality for the future of space exploration for all.”

The two projects that were selected for the program include:

  • B-SURE: Boosting Spaceflight Underrepresented Researcher Equity:
    • Principal Investigator: Dr. Rachael Seidler, University of Florida
    • Co-Investigators: Drs. Josephine Allen and Christine Wegner, University of Florida; Dr. Ana Diaz Artiles, Texas A&M University.
    • Dr. Rachael Seidler and her University of Florida team is partnered with Texas A&M University to survey the field and build a database of underrepresented researchers interested in pursuing space health research and a second database of leaders in this field open to new collaborators and mentorship.
  • Lyndon B. Johnson Institute for STEM Education and Research Space Health Inclusion Partnership
    • Principal Investigator: Dr. Kristina Collins, Texas State University
    • Co-Investigators and Collaborators: Drs. Leslie Huling, Barbie Buckner and Sara Torres, Deepika Sangam, Texas State University.
    • Dr. Collins and her team will use Texas State's existing virtual education tools to launch a set of novel space health content with digital badges and certifications.

Each of the projects were selected for "their innovative means of facilitating underrepresented researcher engagement," per the news release. Both teams will establish a cohort of underrepresented researchers dedicated to innovating future applications for space health research funding.

TRISH is funded by NASA’s Human Research Program and seeks both early stage and translation-ready research and technology to protect and improve the health and performance of space explorers. Last month, TRISH released a free-to-watch documentary on space health.

Baylor College of Medicine hosted U.S. Rep. Sylvia Garcia (TX-29) for a check presentation. Photo courtesy of BCM

Houston institution receives $1.1M for long-COVID clinic

research funding

A new funding project that's a part of the Bipartisan Omnibus Appropriations Bill doled out over $10 million to health care institutions — and a Houston initiative is cashing in on a chunk of that funding.

Baylor College of Medicine and Harris Health’s long-COVID care clinics received $1.1 million from the the Congressional Community Project Funding program. U.S. Rep. Sylvia Garcia (TX-29) attended the check presentation of the funding, as did Harris Health CEO Dr. Esmaeil Porsa, BCM President, CEO, and Executive Dean Dr. Paul Klotman, and Regional Director of the U.S. Department of Health and Human Services Sima Ladjevardian.

Long-COVID symptoms, which are categorized by any level of severity of the disease, can affect organ systems such as the heart, lungs, or brain, and include persistent shortness of breath, brain fog or anxiety. BCM started post-COVID treatment initiatives in 2021.

The organization's long-COVID care facilities will be expanding to Harris Health’s Strawberry Clinic located in East Harris County in the 29th Congressional District. Baylor's Institute for Clinical and Translational Research experts will also work to develop, maintain, and analyze a COVID-19 database.

“Rep Garcia was instrumental in guiding this project through to its approval,” says Klotman in a news release. “She understands the health disparities of her district and the greater Houston community and spearheaded efforts for the BCM program’s inclusion in the Appropriations Bill.”

Garcia, according to the release, is responsible for spearheading the effort for nine Houston area community projects that are currently being funding.

"In my district we know we have a high rate of COVID and we know we will have a high long-COVID impact," says Rep. Garcia. "It is important to support care and research because it is impacting their quality of life and it is impacting their ability to work. The long-COVID treatment and research projects going on here at Baylor are some of the best. We are doing the work, we are doing the research, and we will continue to do it together."

NASA has renewed its support for Baylor College of Medicine's Translational Research Institute for Space Health. Photo courtesy of NASA

Houston research organization receives renewal from NASA and millions in funding for space health projects

new funding

Baylor College of Medicine's Translational Research Institute for Space Health, or TRISH, was granted renewal from NASA this week, which will allow the organization to continue to conduct biomedical research geared at protecting astronauts in deep space through 2028.

According to a statement, NASA reviewed TRISH in December 2020 ahead of the five year mark of its cooperative agreement with BCM's Center for Space Medicine. NASA opted to continue the partnership and now TRISH will receive additional funding of up to $134.6 million from 2022 to 2028.

"NASA has received outstanding value from our bold approach to sourcing and advancing space health research and technologies," institute director Dorit Donoviel, said in a statement. "We are proud to be NASA's partner in its human space exploration mission and to be supporting the research necessary to create new frontiers in healthcare that will benefit all humans."

The institute will focus its efforts on Mars exploration missions in the next six years and has been given three main objectives, according to the release:

  • To build strategic partnerships that will increase the volume of available biometric data on the impact of space travel on health and astronaut performance
  • To build a digital platform that simulates the spaceflight environment and will allow researchers to model and test new health technologies on Earth
  • To develop tissue chip technology that will allow astronauts to place a variety of human cells in lunar orbit during the NASA Artemis research missions to track the effects of space radiation and microgravity on humans

Since TRISH was founded in 2016 it has led the charge in space health research and has partnered with and provided grants to an array of innovative startups to do so.

In 2020 is granted Houston-based Z3VR $50,000 to explore the ways virtual reality can boost physical and mental health among astronauts and it has funded several projects surrounding space radiation levels.

At the time of 2020 review, TRISH had developed and transitioned 34 completed astronaut health and protection projects to NASA and had connected 415 first-time NASA researchers with opportunities to develop space health solutions.

A new AI-optimized COVID screening device, a free response resource, and more — here's your latest roundup of research news. Image via Getty Images

These are the latest COVID-19-focused research projects happening at Houston institutions

research roundup

Researchers across the Houston area are working on COVID-19 innovations every day, and scientists are constantly finding new ways this disease is affecting humankind.

From a COVID breathalyzer to a new collaboration in Houston — here's your latest roundup of local coronavirus research news.

A&M System to collaborate on a COVID-19 breathalyzer

A prototype of the device will be used on the Texas A&M campus. Photo via tamu.edu

Researchers at Texas A&M University System are collaborating on a new device that uses artificial intelligence in a breathalyzer situation to detect whether individuals should be tested for COVID-19. The technology is being developed through a collaboration with Dallas-based company, Worlds Inc., and the U.S. Air Force.

The device is called Worlds Protect and a patient can use a disposable straw to blow into a copper inlet. In less than a minute, test results can be sent to the person's smartphone. Worlds Inc. co-founders Dave Copps and Chris Rohde envision Worlds Protect kiosks outside of highly populated areas to act as a screening process, according to a news release.

"People can walk up and, literally, just breathe into the device," says Rohde, president of Worlds Inc., in the release. "It's completely noninvasive. There's no amount of touching. And you quickly get a result. You get a yay or nay."

The university system has contributed $1 million in the project's development and is assisting Worlds Inc. with engineering and design, prototype building and the mapping of a commercial manufacturing process. According to the release, the plan was to test the prototypes will be tried out this fall on the Texas A&M campus.

"Getting tech innovations to market is one of our sweet spots," says John Sharp, chancellor of the Texas A&M System, in the release. "This breakthrough could have lasting impact on global public health."

Baylor College of Medicine researchers to determine cyclosporine’s role in treating hospitalized COVID-19 patients

BCM researchers are looking into the treatment effect of an existing drug on COVID-19 patients. Photo via BCM.edu

The Baylor College of Medicine has launched a randomized clinical trial to look into how the drug cyclosporine effects the prevention of disease progression in pre-ICU hospitalized COVID-19 patients. The drug has been used for about 40 years to prevent rejection of organ transplants and to treat patients with rheumatoid arthritis and psoriasis.

"The rationale is strong because the drug has a good safety profile, is expected to target the body's hyperimmune response to COVID and has been shown to directly inhibit human coronaviruses in the lab," says Dr. Bryan Burt, chief of thoracic surgery in the Michael E. DeBakey Department of Surgery at Baylor, says in a press release.

Burt initiated this trial and BCM is the primary site for the study, with some collaboration with Brigham and Women's. The hypothesis is that the drug will help prevent the cytokine storm that patients with COVID-19 experience that causes their health to decline rapidly, according to the release.

The study, which is funded by Novartis, plans to enroll 75 hospitalized COVID-19 patients at Baylor St. Luke's Medical Center who are not in the ICU. There will be an initial evaluation at six months but Burt expects to have the final study results in one year.

Rice launches expert group to help guide pandemic response

A new response team is emerging out of a collaboration led by Rice University. Photo courtesy of Rice

Rice University is collaborating with other Houston institutions to create the Biomedical Expert Panel, supported by Texas Policy Lab, to assist officials in long-term pandemic recovery.

"Not all agencies and decision-makers have an in-house epidemiologist or easy access to leaders in infectious disease, immunology and health communications," says Stephen Spann, chair of the panel and founding dean of the University of Houston College of Medicine, in a news release. "This panel is about equity. We must break out of our knowledge siloes and face this challenge together, with a commitment to inclusivity and openness."

The purpose of the panel is to be available as a free resource to health departments, social service agencies, school districts and other policymakers. The experts will help design efficient public health surveillance plans, advise on increasing testing capacity and access for underserved communities, and more.

"The precise trajectory of the local epidemic is difficult to predict, but we know that COVID-19 will continue to be a long-term challenge," says E. Susan Amirian, an epidemiologist who leads the TPL's health program, in the release. "Although CDC guidelines offer a good foundation, there is no one-size-fits-all approach when managing a crisis of this magnitude across diverse communities with urgent needs."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston clean hydrogen startup to pilot tech with O&G co.

stay gold

Gold H2, a Houston-based producer of clean hydrogen, is teaming up with a major U.S.-based oil and gas company as the first step in launching a 12-month series of pilot projects.

The tentative agreement with the unnamed oil and gas company kicks off the availability of the startup’s Black 2 Gold microbial technology. The technology underpins the startup’s biotech process for converting crude oil into proprietary Gold Hydrogen.

The cleantech startup plans to sign up several oil and gas companies for the pilot program. Gold H2 says it’s been in discussions with companies in North America, Latin America, India, Eastern Europe and the Middle East.

The pilot program is aimed at demonstrating how Gold H2’s technology can transform old oil wells into hydrogen-generating assets. Gold H2, a spinout of Houston-based biotech company Cemvita, says the technology is capable of producing hydrogen that’s cheaper and cleaner than ever before.

“This business model will reshape the traditional oil and gas industry landscape by further accelerating the clean energy transition and creating new economic opportunities in areas that were previously dismissed as unviable,” Gold H2 says in a news release.

The start of the Black 2 Gold demonstrations follows the recent hiring of oil and gas industry veteran Prabhdeep Singh Sekhon as CEO.

“With the proliferation of AI, growth of data centers, and a national boom in industrial manufacturing underway, affordable … carbon-free energy is more paramount than ever,” says Rayyan Islam, co-founder and general partner at venture capital firm 8090 Industries, an investor in Gold H2. “We’re investing in Gold H2, as we know they’ll play a pivotal role in unleashing a new dawn for energy abundance in partnership with the oil industry.”

------

This article originally ran on EnergyCapital.

3 Houston innovators to know this week

who's who

Editor's note: Every week, I introduce you to a handful of Houston innovators to know recently making headlines with news of innovative technology, investment activity, and more. This week's batch includes an e-commerce startup founder, an industrial biologist, and a cellular scientist.

Omair Tariq, co-founder and CEO of Cart.com

Omair Tariq of Cart.com joins the Houston Innovators Podcast to share his confidence in Houston as the right place to scale his unicorn. Photo via Cart.com

Houston-based Cart.com, which operates a multichannel commerce platform, has secured $105 million in debt refinancing from investment manager BlackRock.

The debt refinancing follows a recent $25 million series C extension round, bringing Cart.com’s series C total to $85 million. The scaleup’s valuation now stands at $1.2 billion, making it one of the few $1 billion-plus “unicorns” in the Houston area.

Cart.com was co-founded by CEO Omair Tariq in October 2020. Read more.

Nádia Skorupa Parachin, vice president of industrial biotechnology at Cemvita

Nádia Skorupa Parachin joined Cemvita as vice president of industrial biotechnology. Photo courtesy of Cemvita

Houston-based biotech company Cemvita recently tapped two executives to help commercialize its sustainable fuel made from carbon waste.

Nádia Skorupa Parachin came aboard as vice president of industrial biotechnology, and Phil Garcia was promoted to vice president of commercialization.

Parachin most recently oversaw several projects at Boston-based biotech company Ginkjo Bioworks. She previously co-founded Brazilian biotech startup Integra Bioprocessos. Read more.

Han Xiao, associate professor of chemistry at Rice University

The funds were awarded to Han Xiao, a chemist at Rice University.

A Rice University chemist has landed a $2 million grant from the National Institute of Health for his work that aims to reprogram the genetic code and explore the role certain cells play in causing diseases like cancer and neurological disorders.

The funds were awarded to Han Xiao, the Norman Hackerman-Welch Young Investigator, associate professor of chemistry, from the NIH's Maximizing Investigators’ Research Award (MIRA) program, which supports medically focused laboratories. Xiao will use the five-year grant to advance his work on noncanonical amino acids.

“This innovative approach could revolutionize how we understand and control cellular functions,” Xiao said in the statement. Read more.

Houston chemist lands $2M NIH grant for cancer treatment research

future of cellular health

A Rice University chemist has landed a $2 million grant from the National Institute of Health for his work that aims to reprogram the genetic code and explore the role certain cells play in causing diseases like cancer and neurological disorders.

The funds were awarded to Han Xiao, the Norman Hackerman-Welch Young Investigator, associate professor of chemistry, from the NIH's Maximizing Investigators’ Research Award (MIRA) program, which supports medically focused laboratories.

Xiao will use the five-year grant to develop noncanonical amino acids (ncAAs) with diverse properties to help build proteins, according to a statement from Rice. He and his team will then use the ncAAs to explore the vivo sensors for enzymes involved in posttranslational modifications (PTMs), which play a role in the development of cancers and neurological disorders. Additionally, the team will look to develop a way to detect these enzymes in living organisms in real-time rather than in a lab.

“This innovative approach could revolutionize how we understand and control cellular functions,” Xiao said in the statement.

According to Rice, these developments could have major implications for the way diseases are treated, specifically for epigenetic inhibitors that are used to treat cancer.

Xiao helped lead the charge to launch Rice's new Synthesis X Center this spring. The center, which was born out of informal meetings between Xio's lab and others from the Baylor College of Medicine’s Dan L Duncan Comprehensive Cancer Center at the Baylor College of Medicine, aims to improve cancer outcomes by turning fundamental research into clinical applications.

They will build upon annual retreats, in which investigators can share unpublished findings, and also plan to host a national conference, the first slated for this fall titled "Synthetic Innovations Towards a Cure for Cancer.”