This week's roundup of Houston innovators includes Abbas Rana of BCM, Rebecca C. Vaught of Van Heron Labs, and Patrick Scateni of Hypertec. Photos courtesy

Editor's note: Welcome to another Monday edition of Innovators to Know. Today I'm introducing you to three Houstonians to read up about — three individuals behind recent innovation and startup news stories in Houston as reported by InnovationMap. Learn more about them and their recent news below by clicking on each article.

Abbas Rana, associate professor of surgery at Baylor College of Medicine

The NIH grant goes toward TransplantAI's work developing more precise models for heart and lung transplantation. Photo via BCM

The National Institute of Health has bestowed a Houston medtech company with a $2.2 million Fast-Track to Phase 2 award. InformAI will use the money for the product development and commercialization of its AI-enabled organ transplant informatics platform.

TransplantAI solves that problem, as well as organ scarcity and inefficiency in allocation of the precious resource.

The NIH grant goes toward developing more precise models for heart and lung transplantation (kidney and liver algorithms are further along in development thanks to a previous award from the National Science Foundation), as well as Phase 2 efforts to fully commercialize TransplantAI.

"There is an urgent need for improved and integrated predictive clinical insights in solid organ transplantation, such as for real-time assessment of waitlist mortality and the likelihood of successful post-transplantation outcomes," according to the grant’s lead clinical investigator, Abbas Rana, associate professor of surgery at Baylor College of Medicine. Read more.

Rebecca C. Vaught, founder and CEO of Van Heron Labs

Van Heron Labs, founded at TMC, raised a $1.1 million seed round led by FoodLabs. Photo via LinkedIn

A biotech company that was founded at the Texas Medical Center in Houston has raised fresh funding to support its goal of innovating new technologies for a healthier humanity.

Van Heron Labs, based in Huntsville, Alabama, raised a $1.1 million seed round led by FoodLabs, a European investor and venture studio for food, health, and climate. The startup taps into genomics, bioinformatics, artificial intelligence, and nanotechnology to improve how cells are cultured and harnessed with the mission to address critical industrial and global challenges with biotechnology.

“Van Heron Labs looks forward to using the generous support and funding from FoodLabs to advance our goal of making biological innovation better, faster, and cheaper," Rebecca C. Vaught, founder and CEO of Van Heron Labs, says in a news release. "By fueling the new bio-economy, we feel that our customers can optimize their systems and bring technologies to overcome critical global challenges to market." Read more.

Patrick Scateni, vice president of global sales of Hypertec

The hardware upgrades more than “double the effective horsepower of DUG’s Houston data center.” Photo via LinkedIn

An Australia-based company has launched a major upgrade of its Houston data center with sustainability in mind.

DUG Technology announced it's increased the company’s high performance computing (HPC) capabilities and also reinforced its commitment to sustainable innovative technology. The company announced its latest investment in 1500 new AMD EPYCTM Genoa servers, which has 192 cores and 1.5 terabytes of DDR5 memory each. Quebec-based IT solution company Hypertec provided the immersion-born hardware.

“DUG’s decision highlights the unmatched technological advancements and superior performance of Hypertec immersion-born products, which are setting a new benchmark in the industry,” Hypertec’s Patrick Scateni, vice president of global sales says in a news release. Read more.

TRISH’s Diversity Partnership Solicitation Program selected two research teams to receive funding and support. Photo via BCM.edu

Houston space health organization announces new diversity-focused grant recipients

diversifying space

A local organization announced two newly funded partnerships to advance research and innovation within space health.

The Translational Research Institute for Space Health, or TRISH, at Baylor College of Medicine has announced — along with partner organizations Caltech and the Massachusetts Institute of Technology — $300,000 in funding for teams at Texas State University and the University of Florida.

The two schools have been named awardees of TRISH’s Diversity Partnership Solicitation Program that was founded to support TRISH’s ongoing commitment to increasing engagement from underrepresented groups in the field of space health research.

“We go to space to improve life everywhere, and we must do so representing everyone,” says Dr. Asha S. Collins, chair of TRISH’s Diversity Advisory Board, in a news release. “The members of TRISH’s Diversity Advisory Board helped select two strong partners through our Diversity Partnership Program, and their work will move us closer to achieving that reality for the future of space exploration for all.”

The two projects that were selected for the program include:

  • B-SURE: Boosting Spaceflight Underrepresented Researcher Equity:
    • Principal Investigator: Dr. Rachael Seidler, University of Florida
    • Co-Investigators: Drs. Josephine Allen and Christine Wegner, University of Florida; Dr. Ana Diaz Artiles, Texas A&M University.
    • Dr. Rachael Seidler and her University of Florida team is partnered with Texas A&M University to survey the field and build a database of underrepresented researchers interested in pursuing space health research and a second database of leaders in this field open to new collaborators and mentorship.
  • Lyndon B. Johnson Institute for STEM Education and Research Space Health Inclusion Partnership
    • Principal Investigator: Dr. Kristina Collins, Texas State University
    • Co-Investigators and Collaborators: Drs. Leslie Huling, Barbie Buckner and Sara Torres, Deepika Sangam, Texas State University.
    • Dr. Collins and her team will use Texas State's existing virtual education tools to launch a set of novel space health content with digital badges and certifications.

Each of the projects were selected for "their innovative means of facilitating underrepresented researcher engagement," per the news release. Both teams will establish a cohort of underrepresented researchers dedicated to innovating future applications for space health research funding.

TRISH is funded by NASA’s Human Research Program and seeks both early stage and translation-ready research and technology to protect and improve the health and performance of space explorers. Last month, TRISH released a free-to-watch documentary on space health.

Baylor College of Medicine hosted U.S. Rep. Sylvia Garcia (TX-29) for a check presentation. Photo courtesy of BCM

Houston institution receives $1.1M for long-COVID clinic

research funding

A new funding project that's a part of the Bipartisan Omnibus Appropriations Bill doled out over $10 million to health care institutions — and a Houston initiative is cashing in on a chunk of that funding.

Baylor College of Medicine and Harris Health’s long-COVID care clinics received $1.1 million from the the Congressional Community Project Funding program. U.S. Rep. Sylvia Garcia (TX-29) attended the check presentation of the funding, as did Harris Health CEO Dr. Esmaeil Porsa, BCM President, CEO, and Executive Dean Dr. Paul Klotman, and Regional Director of the U.S. Department of Health and Human Services Sima Ladjevardian.

Long-COVID symptoms, which are categorized by any level of severity of the disease, can affect organ systems such as the heart, lungs, or brain, and include persistent shortness of breath, brain fog or anxiety. BCM started post-COVID treatment initiatives in 2021.

The organization's long-COVID care facilities will be expanding to Harris Health’s Strawberry Clinic located in East Harris County in the 29th Congressional District. Baylor's Institute for Clinical and Translational Research experts will also work to develop, maintain, and analyze a COVID-19 database.

“Rep Garcia was instrumental in guiding this project through to its approval,” says Klotman in a news release. “She understands the health disparities of her district and the greater Houston community and spearheaded efforts for the BCM program’s inclusion in the Appropriations Bill.”

Garcia, according to the release, is responsible for spearheading the effort for nine Houston area community projects that are currently being funding.

"In my district we know we have a high rate of COVID and we know we will have a high long-COVID impact," says Rep. Garcia. "It is important to support care and research because it is impacting their quality of life and it is impacting their ability to work. The long-COVID treatment and research projects going on here at Baylor are some of the best. We are doing the work, we are doing the research, and we will continue to do it together."

NASA has renewed its support for Baylor College of Medicine's Translational Research Institute for Space Health. Photo courtesy of NASA

Houston research organization receives renewal from NASA and millions in funding for space health projects

new funding

Baylor College of Medicine's Translational Research Institute for Space Health, or TRISH, was granted renewal from NASA this week, which will allow the organization to continue to conduct biomedical research geared at protecting astronauts in deep space through 2028.

According to a statement, NASA reviewed TRISH in December 2020 ahead of the five year mark of its cooperative agreement with BCM's Center for Space Medicine. NASA opted to continue the partnership and now TRISH will receive additional funding of up to $134.6 million from 2022 to 2028.

"NASA has received outstanding value from our bold approach to sourcing and advancing space health research and technologies," institute director Dorit Donoviel, said in a statement. "We are proud to be NASA's partner in its human space exploration mission and to be supporting the research necessary to create new frontiers in healthcare that will benefit all humans."

The institute will focus its efforts on Mars exploration missions in the next six years and has been given three main objectives, according to the release:

  • To build strategic partnerships that will increase the volume of available biometric data on the impact of space travel on health and astronaut performance
  • To build a digital platform that simulates the spaceflight environment and will allow researchers to model and test new health technologies on Earth
  • To develop tissue chip technology that will allow astronauts to place a variety of human cells in lunar orbit during the NASA Artemis research missions to track the effects of space radiation and microgravity on humans

Since TRISH was founded in 2016 it has led the charge in space health research and has partnered with and provided grants to an array of innovative startups to do so.

In 2020 is granted Houston-based Z3VR $50,000 to explore the ways virtual reality can boost physical and mental health among astronauts and it has funded several projects surrounding space radiation levels.

At the time of 2020 review, TRISH had developed and transitioned 34 completed astronaut health and protection projects to NASA and had connected 415 first-time NASA researchers with opportunities to develop space health solutions.

A new AI-optimized COVID screening device, a free response resource, and more — here's your latest roundup of research news. Image via Getty Images

These are the latest COVID-19-focused research projects happening at Houston institutions

research roundup

Researchers across the Houston area are working on COVID-19 innovations every day, and scientists are constantly finding new ways this disease is affecting humankind.

From a COVID breathalyzer to a new collaboration in Houston — here's your latest roundup of local coronavirus research news.

A&M System to collaborate on a COVID-19 breathalyzer

A prototype of the device will be used on the Texas A&M campus. Photo via tamu.edu

Researchers at Texas A&M University System are collaborating on a new device that uses artificial intelligence in a breathalyzer situation to detect whether individuals should be tested for COVID-19. The technology is being developed through a collaboration with Dallas-based company, Worlds Inc., and the U.S. Air Force.

The device is called Worlds Protect and a patient can use a disposable straw to blow into a copper inlet. In less than a minute, test results can be sent to the person's smartphone. Worlds Inc. co-founders Dave Copps and Chris Rohde envision Worlds Protect kiosks outside of highly populated areas to act as a screening process, according to a news release.

"People can walk up and, literally, just breathe into the device," says Rohde, president of Worlds Inc., in the release. "It's completely noninvasive. There's no amount of touching. And you quickly get a result. You get a yay or nay."

The university system has contributed $1 million in the project's development and is assisting Worlds Inc. with engineering and design, prototype building and the mapping of a commercial manufacturing process. According to the release, the plan was to test the prototypes will be tried out this fall on the Texas A&M campus.

"Getting tech innovations to market is one of our sweet spots," says John Sharp, chancellor of the Texas A&M System, in the release. "This breakthrough could have lasting impact on global public health."

Baylor College of Medicine researchers to determine cyclosporine’s role in treating hospitalized COVID-19 patients

BCM researchers are looking into the treatment effect of an existing drug on COVID-19 patients. Photo via BCM.edu

The Baylor College of Medicine has launched a randomized clinical trial to look into how the drug cyclosporine effects the prevention of disease progression in pre-ICU hospitalized COVID-19 patients. The drug has been used for about 40 years to prevent rejection of organ transplants and to treat patients with rheumatoid arthritis and psoriasis.

"The rationale is strong because the drug has a good safety profile, is expected to target the body's hyperimmune response to COVID and has been shown to directly inhibit human coronaviruses in the lab," says Dr. Bryan Burt, chief of thoracic surgery in the Michael E. DeBakey Department of Surgery at Baylor, says in a press release.

Burt initiated this trial and BCM is the primary site for the study, with some collaboration with Brigham and Women's. The hypothesis is that the drug will help prevent the cytokine storm that patients with COVID-19 experience that causes their health to decline rapidly, according to the release.

The study, which is funded by Novartis, plans to enroll 75 hospitalized COVID-19 patients at Baylor St. Luke's Medical Center who are not in the ICU. There will be an initial evaluation at six months but Burt expects to have the final study results in one year.

Rice launches expert group to help guide pandemic response

A new response team is emerging out of a collaboration led by Rice University. Photo courtesy of Rice

Rice University is collaborating with other Houston institutions to create the Biomedical Expert Panel, supported by Texas Policy Lab, to assist officials in long-term pandemic recovery.

"Not all agencies and decision-makers have an in-house epidemiologist or easy access to leaders in infectious disease, immunology and health communications," says Stephen Spann, chair of the panel and founding dean of the University of Houston College of Medicine, in a news release. "This panel is about equity. We must break out of our knowledge siloes and face this challenge together, with a commitment to inclusivity and openness."

The purpose of the panel is to be available as a free resource to health departments, social service agencies, school districts and other policymakers. The experts will help design efficient public health surveillance plans, advise on increasing testing capacity and access for underserved communities, and more.

"The precise trajectory of the local epidemic is difficult to predict, but we know that COVID-19 will continue to be a long-term challenge," says E. Susan Amirian, an epidemiologist who leads the TPL's health program, in the release. "Although CDC guidelines offer a good foundation, there is no one-size-fits-all approach when managing a crisis of this magnitude across diverse communities with urgent needs."

Five research teams are studying space radiation's effect on human tissue. Photo via NASA/Josh Valcarcel

2 Houston research teams to receive support from local space health organization

out of this world

A Houston-based organization has named five research projects to advance the understanding of space radiation using human tissue. Two of the five projects are based in Houston.

The Translational Research Institute for Space Health, or TRISH, is based at Baylor College of Medicine and funds health research and tech for astronauts during space missions. The astronauts who are headed to the moon or further will be exposed to high Galactic Cosmic Radiation levels, and TRISH wants to learn more about the effects of GCR.

"With this solicitation, TRISH was looking for novel human-based approaches to understand better Galactic Cosmic Rays (GCR) hazards, in addition to safe and effective countermeasures," says Kristin Fabre, TRISH's chief scientist, in a news release. "More than that, we sought interdisciplinary teams of scientists to carry these ideas forward. These five projects embody TRISH's approach to cutting-edge science."

The five projects are:

  • Michael Weil, PhD, of Colorado State University, Colorado — Effects of chronic high LET radiation on the human heart
  • Gordana Vunjak-Novakovic, PhD of Columbia University, New York — Human multi-tissue platform to study effects of space radiation and countermeasures
  • SharonGerecht, PhD of Johns Hopkins University, Maryland — Using human stem-cell derived vascular, neural and cardiac 3D tissues to determine countermeasures for radiation
  • SarahBlutt, PhD of Baylor College of Medicine, Texas — Use of Microbial Based Countermeasures to Mitigate Radiation Induced Intestinal Damage
  • Mirjana Maletic-Savatic, PhD of Baylor College of Medicine, Texas — Counteracting space radiation by targeting neurogenesis in a human brain organoid model

The researchers are tasked with simulating radiation exposure to human tissues in order to study new ways to protect astronauts from the radiation once in deep space. According to the release, the tissue and organ models will be derived from blood donated by the astronaut in order to provide him or her with customized protection that will reduce the risk to their health.

TRISH is funded by a partnership between NASA and Baylor College of Medicine, which also includes consortium partners Caltech and MIT. The organization is also a partner to NASA's Human Research Program.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston university lands $2.5M grant to expand STEM scholarship program for underserved communities

evolving inclusivity

Rice University will expand its Rice Emerging Scholars Program (RESP) over the next two years thanks to a recent grant from the National Science Foundation.

The $2.5 million in NSF funding will allow Rice to increase the number of scholars the RESP offers from 40 to 50 students this summer and to 60 students in 2025. The program works to address disparities among first-year students and to "assist students in adapting to the challenging pace, depth and rigor of the STEM curricula at Rice" through a six-week summer bridge program and ongoing mentorship, according to a statement from the university. Summer tuition scholarships, housing subsidies and research stipends are also provided.

Rice estimates that roughly 20 percent of its undergraduate population comes from families with limited financial resources, and 12 percent of students are the first in their families to attend college.

“Low-income students, especially those who are first-generation, face unique obstructions to pursuing college STEM degrees,” said Senior associate provost Matthew Taylor, a co-principal investigator on the grant. “RESP and Rice University are committed to eliminating these obstructions and ensuring that all students have the opportunity to thrive and achieve their academic and professional aspirations.”

Taylor created the program with Professor Emeritus of Mathematics Mike Wolf in 2012. It has since worked with more than 400 RESP scholars, according to the program's website. Most (about 79 percent) graduate with STEM degrees and an overwhelming 90 percent of RESP scholars graduate in four years, according to recent data.

“Rice recognizes the challenges faced by students from low-income backgrounds,” Angel Martí, chair and professor of chemistry, faculty director of RESP and principal investigator of the grant, said in a statement. “RESP aims to empower these students to achieve their academic and professional aspirations as future scientists and engineers.”

Earlier this year, the NSF also awarded Rice assistant professor Amanda Marciel $670,406 through its highly competitive CAREER Awards to continue her research in designing branch elastomers.

Marciel was also named to the 2024 cohort of Rice Innovation Fellows through the university's Office of Innovation and The Liu Idea Lab for Innovation and Entrepreneurship (or Lilie). The group includes 10 Ph.D. and postdoctoral students who aim to translate research into real-world startups.

With FDA approval, Houston health tech company prepares nationwide deployment

Houston innovators podcast episode 232

Jessica Traver Ingram has been captivated by the intersection of physics and health care for most of her life, and that passion led her to contributing to the establishment of the Texas Medical Center's Biodesign Fellowship. After helping make the program a reality, Traver Ingram then participated in it as a fellow.

The program selects fellows and then lets them explore the TMC's member institutions to find ways to innovate within unmet clinical needs, and the inefficiency and challenges with placing epidurals and lumbar punctures caught Traver Ingram and her cohort's eye. The process relies completely on the health care practitioner's ability to feel the spine with their fingers to make the injection.

"We kept watching the inefficiencies of these procedures, and everyone was like, 'you're right, we don't really know why we do it this way,'" Traver Ingram says on the Houston Innovators Podcast. "It's really cool to be outsiders watching and observing, because you just see things other people don't see — and that's in any industry."

With that, IntuiTap was born. Traver Ingram describes its tool, the VerTouch, as a "stud finder for the spine." After years of growing the company, she can also now call it FDA-approved.


"FDA clearance allows us to market the device in the United States, so we are entering the commercial launch stage of the company, which is really exciting," Traver Ingram says. "We plan to have these devices available in hospitals across the country within the year."

First up is what Traver Ingram calls a soft launch. The company is picking five institutions that want to be centers of excellence for the device and doing trial launches there before entering into a greater, nationwide rollout.

"It's just crazy that what started as just an idea on paper is now FDA approved and commercially ready and something that patients can see in hospitals this year," Traver Ingram says.

And the timing is important, she explains, adding that where the health care industry seems to be at as a whole is primed for innovation like IntuiTap.

"There's a lot of really exciting developments happening in health care right now," Traver Ingram says. "I feel like we're really at a tipping point for innovation and we're going to see some really big leaps in the next couple of years.

"One of the exciting trends I think that we're seeing is a shift away from blind procedures or procedures that are seen as an art requiring a significant amount of skills toward more science-based, safer, consistent, and repeatable procedures," she continues. "We fit really well into that category, so I'm glad that we're seeing that shift."

Unique cell therapy developed in Houston doses inaugural patient

cancer-fighting innovation

Replay, a genome-writing company headquartered in San Diego, has announced that its first patient has been dosed with an engineered T-Cell Receptor Natural Killer (TCR-NK) cell therapy for relapsed or refractory multiple myeloma.

What does that have to do with Houston? Last year, Replay incorporated a first-in-class engineered TCR-NK cell therapy product company, Syena, using technology developed by Dr. Katy Rezvani at The University of Texas MD Anderson Cancer Center.

Rezvani, a professor of stem cell transplantation and cellular therapy, is the force behind MD Anderson’s Rezvani Lab, a group of 55 people, all focused on harnessing natural killer cells to combat cancer.

“Everybody thinks that the immune system is fighting viruses and infections, but I feel our immune system is capable of recognizing and killing abnormal cells or cells that are becoming cancerous and they're very powerful. This whole field of immunotherapy really refers to the power of the immune system,” Rezvani tells InnovationMap.

Dr. Katy Rezvani is a professor of stem cell transplantation and cellular therapy and the force behind MD Anderson’s Rezvani Lab, which is focused on harnessing natural killer cells to combat cancer. Photo via mdanderson.org

At Rezvani Lab, scientists train immune cells to fight cancer. While cancer drugs like chemotherapy are still the norm, immunotherapy has gained ground, led by Houston research, including the work of Nobel laureate Jim Allison. The harnessed cells are taught to attack cancerous cells, while ignoring healthy ones, says Rezvani. “We’re turning them into heat-seeking missiles,” she explains.

However, there must be a beacon to signal to those “missiles” that there is something to attack. Much of the field has used chimeric antigen receptors (CARs) to achieve that. But they have limitations.

“CARs can only recognize beacons that sit on the surface of the tumor cells,” Rezvani says. “So basically, it's like the tumor cell has to have a hat on it.”

She says that this usually means that the targets that send off a signal are relatively limited, mostly blood cancers. Using T cell receptors (TCRs) may be able to open up the field to look beyond the “hat.” In other words, TCRs can peer inside cells and see what differentiates a tumor cell from healthy cells. With Replay, Rezvani Lab has developed a first-in-class and first-in-human approach of engineering natural killer cells to express the TCR.

There are six different FDA-approved products that use CAR-T cells, but Rezvani says that her TCR-NK-based technology, though still in its early phases, shows great promise.

“We could use it to target many different types of antigens, many different types of cancers, especially solid tumors," she explains. "These cell therapies have a lot of potential — we call them living drugs… It's not like chemotherapy where you have to keep giving different multiple cycles, these cells are very long lived.”

Rezvani, who started her career in London, says that Houston has been instrumental in the success of her lab.

“There are so many opportunities because we have access to some of the most brilliant minds in research,” Rezvani says. “We have some of the best clinicians in the world. We have patients who come to us who are willing to participate in our clinical trials — really put their trust in us — and are committed and want to participate in these clinical studies.”

The role of funding also plays a part. As Rezvani admitted, bringing a new technology to the market is expensive. The philanthropists who help support trials can’t be forgotten among Houston’s finest.

Whether or not Syena produces the first TCR-NK product on the market, Rezvani is enthusiastic and hopeful for the future of her patients.

“The field of immunotherapy is really expanding, the field of cell therapies is expanding, and there is so much promise,” she says. “The promise of AI, big data, all the engineering tools that we have available, the promise of CRISPR — all of that is going to bring what we've learned from biology, from basic science, together to help us make the cell therapies that are going to be safe and and also very effective for our patients.”