For the third year, Rice University has tapped 10 Rice Innovation Fellows working in engineering and materials science fields to support. Photo via rice.edu

Rice University has announced its latest cohort of fellows who aim to translate research into real-world startups.

The 2024 cohort of Rice Innovation Fellows is the third of its kind since the university's Office of Innovation and The Liu Idea Lab for Innovation and Entrepreneurship (or Lilie) launched the program in 2022. The group includes 10 Ph.D. and postdoctoral students working in engineering and materials science fields.

The program provides personalized mentorship and up to $20,000 equity-free funding.

According to Lilie, the 10 members of the 2024 cohort are:

  • Barclay Jumet, a Ph.D. candidate in the department of mechanical engineering, working under Dan Preston and specializing in mechanics, thermal systems and wearable technologies. InnovationMap covered his recent technology here.
  • Tianshu Zhai, a Ph.D. student studying materials science specializing in hexagonal boron nitride-based thermal interface materials
  • Zachary Kingston, a postdoctoral research associate and lab manager for the Kavraki Lab in the Computer Science department at Rice, working under the direction of Dr. Lydia Kavraki, a pioneer in the field of robot motion planning. Kingston is developing a novel approach to high-performance, low-cost robot motion planning with Wil Thomason.
  • Soobin Cho, a Ph.D. student and co-founder of Duromem, which created the Dual-Role Electrically Conductive Membrane to improve existing water treatment systems
  • Sara Abouelniaj, a Ph.D. candidate in Material Science and Nanoengineering and founder of Graphene Grids LLC, which is exploring opportunities to diversify its range of grid types services offered
  • Alisha Menon, is founding a medical device startup that's developing wireless, AI-enabled patient monitoring devices for babies in the NICU. Her work is being done in collaboration with the Texas Medical Center and Rice, with support from NSF and the Southwest Pediatric Device Consortium.
  • Wil Thomason, a CRA Computing Innovation postdoctoral fellow in the Kavraki Lab at Rice University who is developing low-cost robot motion planning with Kingston
  • Jeremy Daum, a Ph.D. candidate at Rice in the Materials Science department working on a a novel production method to create photocatalysts
  • Jonathan Montes, a Ph.D. candidate in Bioengineering focused on combating neurodegenerative diseases with highly selective neuromodulation
  • Andrew (AJ) Walters, a Ph.D. student in Bioengineering working in the labs of Dr. Caleb Bashor (Rice) and Dr. Scott Olson (UTHealth Houston McGovern Medical School) who's building an accessible allogeneic cell therapy to treat inflammation disorders and potentially cancer. He was awarded a three-year NSF Graduate Research Fellowship in 2022.

Over the last three years, Innovation Fellows have brought in more than $6 million in funding for their ventures, according to Rice.

Last year, the cohort of 10 included doctoral and postdoctoral students working in fields from bioengineering and chemistry to civil and environmental engineering.

Late last year, Lilie also announced its new entrepreneurship council known as Lilie’s Leadership Council. The group is made up of 11 successful business leaders with ties to Houston from the likes of co-founder Frank Liu to former Houston Mayor Annise Parker and several other CEOs and board members of successful companies. The council members agreed to donate time and money to the university’s entrepreneurship programs.

This week's roundup of Houston innovators includes Michelle Stansbury of Houston Methodist, Barclay Jumet of Rice University, and Collin McLelland of Digital Wildcatters. Photos courtesy

3 Houston innovators to know this week

who's who

Editor's note: In this week's roundup of Houston innovators to know, I'm introducing you to three local innovators across industries — from health care to energy tech — recently making headlines in Houston innovation.

Michelle Stansbury, vice president of innovation and IT applications at Houston Methodist

Michelle Stansbury joins the Houston Innovators Podcast. Photo courtesy of Houston Methodist

Houston Methodist has a small group of leaders — the Digital Innovation Obsessed People, or DIOP — that lead external and internal innovation efforts, from pilots to implementation. Michelle Stansbury is one of those leaders. As vice president of innovation and IT applications at Houston Methodist, she oversees the system's IT department and serves as a leader within its innovation efforts. This includes the Center for Innovation Technology Hub — which opened in 2020 in the Texas Medical Center location and opened its Ion outpost last week.

Stansbury explains on the Houston Innovators Podcast how effective this distribution of innovation responsibilities has been for Houston Methodist. With everyone having a seat at the table — operations knows the biggest problems that need solutions, IT knows how to deploy technology, etc. — implementation of new innovations has been sped up.

"If we partner together, we should be able to succeed fast or fail fast," she says on the show. "We've been able to find a solution, pilot it, and, if it works well, roll it out at a speed that most other organizations have not been able to do. It's been highly successful for us." Read more.

Barclay Jumet, researcher at Rice University

A team at Rice University is designing wearable technology that can be used for navigation for users with visual and auditory impairments. Photo by Brandon Martin/Rice University

A group of Rice researchers have tapped into the sense of touch to improve how wearable technology can communicate with its user.

Barclay Jumet, a mechanical engineering PhD student at Rice working in the labs of Daniel Preston and Marcia O’Malley, published the findings in the August issue of “Device.” The study outlines the group's new system of haptic accessories that rely heavily on fluidic control over electrical inputs to signal or simulate touch to a wearer.

“In the future, this technology could be directly integrated with navigational systems, so that the very textiles making up one’s clothing can tell users which way to go without taxing their already overloaded visual and auditory senses—for instance by needing to consult a map or listen to a virtual assistant,” Jumet said in a release from Rice. Read more.

Collin McLelland, co-founder and CEO of Digital Wildcatters

This Houston-based media company launched a networking platform to help solve the energy crisis. Photo courtesy

Houston-based media organization Digital Wildcatters has officially launched the beta program of their networking app to help bridge the hiring gap in the energy industry. By providing a platform for individuals to get their questions answered by experts and a space for companies seeking qualified talent, Collide is structured to ignite the next generation of energy innovators.

Collin McLelland, co-founder and CEO of Digital Wildcatters, says he aims to expand their professional community through this networking platform. Rather than being a transition away from Digital Wildcatters’ roots as a digital media organization McLelland explains Collide is an integration of the community they have built through podcasts and events into an interactive platform.

“If you look at what we’ve done historically with Digital Wildcatters, we’ve built an extremely engaged community of energy professionals — it’s a next generation community, very young forward thinking professionals that are working towards solving the world’s energy crisis,” McLelland shares. Read more.

A team at Rice University is designing wearable technology that can be used for navigation for users with visual and auditory impairments. Photo by Brandon Martin/Rice University

Rice team develops complex wearables that can navigate users through Houston

hi, tech

A group of Rice researchers have tapped into the sense of touch to improve how wearable technology can communicate with its user.

Barclay Jumet, a mechanical engineering PhD student at Rice working in the labs of Daniel Preston and Marcia O’Malley, published the findings in the August issue of “Device.” The study outlines the group's new system of haptic accessories that rely heavily on fluidic control over electrical inputs to signal or simulate touch to a wearer. The research was supported by the National Science Foundation, the Rice University Academy of Fellows, and the Gates Millennium Scholars Program.

The accessories include a belt and textile sleeves, which deliver haptic cues like vibration, tapping and squeezing through pressure generated by a lightweight carbon dioxide tank attached to the belt. The sleeve contains up to six quarter-sized pouches that inflate with varying force and frequency, depending on what is being communicated to the wearer.

Marcia O'Malley (from left), Barclay Jumet and Daniel Preston developed a wearable textile device that can deliver complex haptic cues in real time to users on the go. Photo by Brandon Martin/Rice University

The team says the wearables have uses for those with visual and auditory impairments and offer a slimmed-down design compared to other bulky complex haptic wearables. The wearables are also washable and repairable, which gives them more everyday uses.

To test the system's usability, the team guided a user on a mile-long route through Houston, signaling haptic cues for forward, backward, left or right through the devices.

“In the future, this technology could be directly integrated with navigational systems, so that the very textiles making up one’s clothing can tell users which way to go without taxing their already overloaded visual and auditory senses—for instance by needing to consult a map or listen to a virtual assistant,” Jumet said in a release from Rice.

O’Malley, chair of the Department of Mechanical Engineering, said the system could also work in tandem with Cochlear implants and make lip-reading easier for users in noisy environments by directing users to sources of sound.

Jumet also sees uses outside of the medical space.

“Instead of a smart watch with simple vibrational cues, we can now envision a ‘smart shirt’ that gives the sensation of a stroking hand or a soft tap on the torso or arm,” he said in the release. “Movies, games and other forms of entertainment could now incorporate the sense of touch, and virtual reality can be more comfortable for longer periods of time.”


Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Screen-free hiking app developed in Houston earns 'Best of the Best' award

Peak Prize

An AI-powered, screen-free hiking system developed by Varshini Chouthri, a recent industrial design graduate from the University of Houston, has received Red Dot’s “Best of the Best” award, which recognizes the top innovative designs around the world.

Known as NOMAD, the system aims to help users stay in the moment while still utilizing technology. It will go on to compete for the Red Dot Luminary Award, the highest recognition given at the international event.

“NOMAD was truly a passion project, inspired by years of hiking growing up, where the outdoors became a place of peace, challenge, and reflection,” Chouthri said in a news release.

“I wanted to design something supporting those kinds of experiences by helping hikers feel more grounded and confident while staying present in nature. It was a way to give back to the moments that made me fall in love with the outdoors in the first place.”

The app “reimagines” outdoor exploration by removing the dependence on screens by using adaptive AI, contextual sensing, and an optional, wearable companion device. It employs a circular learning model that enables hikers to receive real-time guidance, safety alerts, personalized trip planning, hands-free navigation and more through a natural interface, according to UH.

NOMAD was developed at the Hines College of Architecture and Design’s PXD LAB. In 2023, Lunet, developed by David Edquilang at Hines College, received the “Best of the Best” recognition and went on to win the Red Dot Luminary Award.

The PXD LAB offers a platform to expand concepts into system-level designs that address real-world challenges, according to UH.

“Varshini’s work on NOMAD exemplifies the future-focused, systems-driven thinking we promote in the Advanced UX Design curriculum,” Min Kang, director of PXD LAB, added in the release. “NOMAD goes beyond being just a product; it reimagines how technology can enhance outdoor exploration without disrupting the experience.”

In addition to the Red Dot honors, NOMAD has already earned distinction from the FIT Sport Design Awards and was a finalist for the International Design Excellence Awards (IDEA) presented by the Industrial Designers Society of America.

NASA signs on latest tenant for new Exploration Park campus, now underway

space hub

Exploration Park, the 240-acre research and commercial institute at NASA's Johnson Space Center, is ready for launch.

Facilities at the property have broken ground, according to a recent episode of NASA's Houston We Have a Podcast, with a completion date targeted for Q4 2026.

The research park has also added Houston-based KBR to its list of tenants. According to a news release from the Greater Houston Partnership, the human spaceflight and aerospace services company will operate a 45,000-square-foot food innovation lab at Exploration Park. KBR will use the facility to focus on customized food systems, packaging and nutrition for the low Earth orbit economy.

“Exploration Park is designed for companies in the space ecosystem, such as KBR, to develop, produce, and deploy innovative new technologies that support space exploration and commerce,” Simon Shewmaker, head of development at ACMI Properties, the developer behind Exploration Park, said in the GHP release. “This project is moving expeditiously, and we’re thrilled to sign such an innovative partner in KBR, reflecting our shared commitment to building the essential infrastructure of tomorrow for the next generation of space innovators and explorers.”

NASA introduced the concept of a collaborative hub for academic, commercial and international partners focused on spaceflight in 2023. It signed leases with the American Center for Manufacturing and Innovation and the Texas A&M University System for the previously unused space at JSC last year.

“For more than 60 years, NASA Johnson has been the hub of human space exploration,” Vanessa Wyche, NASA Johnson Space Center Director, said in a statement at the time. “This Space Systems Campus will be a significant component within our objectives for a robust and durable space economy that will benefit not only the nation’s efforts to explore the Moon, Mars and the asteroids, but all of humanity as the benefits of space exploration research roll home to Earth.”

Texas A&M is developing the $200 million Texas A&M Space Institute, funded by the Texas Space Commission, at the center of the park. The facility broke ground last year and will focus on academic, government and commercial collaboration, as well as workforce training programs. ACMI is developing the facilities at Exploration Park.

Once completed, Exploration Park is expected to feature at least 20 build-to-suit facilities over at least 1.5 million square feet. It will offer research and development space, laboratories, clean rooms, office space and light manufacturing capabilities for the aerospace, robotics, life support systems, advanced manufacturing and artificial intelligence industries.

According to the GHP, Griffin Partners has also been selected to serve as the co-developer of Exploration Park. Gensler is leading the design and Walter P Moore is overseeing civil engineering.

Houston cleantech co. plans first-of-its-kind sustainable aviation fuel facility

coming soon

Houston-based Syzygy Plasmonics announced plans to develop what it calls the world's first electrified facility to convert biogas into sustainable aviation fuel (SAF).

The facility, known as NovaSAF 1, will be located in Durazno, Uruguay. It is expected to produce over 350,000 gallons of SAF annually, which would be considered “a breakthrough in cost-effective, scalable clean fuel,” according to the company.

"This is more than just a SAF plant; it's a new model for biogas economics," Trevor Best, CEO of Syzygy Plasmonics, said in a news release. "We're unlocking a global asset class of underutilized biogas sites and turning them into high-value clean fuel hubs without pipelines, costly gas separation, or subsidy dependence.”

The project is backed by long-term feedstock and site agreements with one of Uruguay's largest dairy and agri-energy operations, Estancias del Lago, while the permitting and equipment sourcing are ongoing alongside front-end engineering work led by Kent.

Syzygy says the project will result in a 50 percent higher SAF yield than conventional thermal biogas reforming pathways and will utilize both methane and CO2 naturally found in biogas as feedstocks, eliminating the need for expensive CO2 separation technologies and infrastructure. Additionally, the modular facility will be designed for easy replication in biogas-rich regions.

The new facility is expected to begin commercial operations in Q1 2027 and produce SAF with at least an 80 percent reduction in carbon intensity compared to Jet A fuel. The company says that once fully commercialized the facility will produce SAF at Jet-A fuel cost parity.

“We believe NovaSAF represents one of the few viable pathways to producing SAF at jet parity and successfully decarbonizing air travel,” Best added in the release.

---

This article originally ran on EnergyCapital.