For the third year, Rice University has tapped 10 Rice Innovation Fellows working in engineering and materials science fields to support. Photo via rice.edu

Rice University has announced its latest cohort of fellows who aim to translate research into real-world startups.

The 2024 cohort of Rice Innovation Fellows is the third of its kind since the university's Office of Innovation and The Liu Idea Lab for Innovation and Entrepreneurship (or Lilie) launched the program in 2022. The group includes 10 Ph.D. and postdoctoral students working in engineering and materials science fields.

The program provides personalized mentorship and up to $20,000 equity-free funding.

According to Lilie, the 10 members of the 2024 cohort are:

  • Barclay Jumet, a Ph.D. candidate in the department of mechanical engineering, working under Dan Preston and specializing in mechanics, thermal systems and wearable technologies. InnovationMap covered his recent technology here.
  • Tianshu Zhai, a Ph.D. student studying materials science specializing in hexagonal boron nitride-based thermal interface materials
  • Zachary Kingston, a postdoctoral research associate and lab manager for the Kavraki Lab in the Computer Science department at Rice, working under the direction of Dr. Lydia Kavraki, a pioneer in the field of robot motion planning. Kingston is developing a novel approach to high-performance, low-cost robot motion planning with Wil Thomason.
  • Soobin Cho, a Ph.D. student and co-founder of Duromem, which created the Dual-Role Electrically Conductive Membrane to improve existing water treatment systems
  • Sara Abouelniaj, a Ph.D. candidate in Material Science and Nanoengineering and founder of Graphene Grids LLC, which is exploring opportunities to diversify its range of grid types services offered
  • Alisha Menon, is founding a medical device startup that's developing wireless, AI-enabled patient monitoring devices for babies in the NICU. Her work is being done in collaboration with the Texas Medical Center and Rice, with support from NSF and the Southwest Pediatric Device Consortium.
  • Wil Thomason, a CRA Computing Innovation postdoctoral fellow in the Kavraki Lab at Rice University who is developing low-cost robot motion planning with Kingston
  • Jeremy Daum, a Ph.D. candidate at Rice in the Materials Science department working on a a novel production method to create photocatalysts
  • Jonathan Montes, a Ph.D. candidate in Bioengineering focused on combating neurodegenerative diseases with highly selective neuromodulation
  • Andrew (AJ) Walters, a Ph.D. student in Bioengineering working in the labs of Dr. Caleb Bashor (Rice) and Dr. Scott Olson (UTHealth Houston McGovern Medical School) who's building an accessible allogeneic cell therapy to treat inflammation disorders and potentially cancer. He was awarded a three-year NSF Graduate Research Fellowship in 2022.

Over the last three years, Innovation Fellows have brought in more than $6 million in funding for their ventures, according to Rice.

Last year, the cohort of 10 included doctoral and postdoctoral students working in fields from bioengineering and chemistry to civil and environmental engineering.

Late last year, Lilie also announced its new entrepreneurship council known as Lilie’s Leadership Council. The group is made up of 11 successful business leaders with ties to Houston from the likes of co-founder Frank Liu to former Houston Mayor Annise Parker and several other CEOs and board members of successful companies. The council members agreed to donate time and money to the university’s entrepreneurship programs.

This week's roundup of Houston innovators includes Michelle Stansbury of Houston Methodist, Barclay Jumet of Rice University, and Collin McLelland of Digital Wildcatters. Photos courtesy

3 Houston innovators to know this week

who's who

Editor's note: In this week's roundup of Houston innovators to know, I'm introducing you to three local innovators across industries — from health care to energy tech — recently making headlines in Houston innovation.

Michelle Stansbury, vice president of innovation and IT applications at Houston Methodist

Michelle Stansbury joins the Houston Innovators Podcast. Photo courtesy of Houston Methodist

Houston Methodist has a small group of leaders — the Digital Innovation Obsessed People, or DIOP — that lead external and internal innovation efforts, from pilots to implementation. Michelle Stansbury is one of those leaders. As vice president of innovation and IT applications at Houston Methodist, she oversees the system's IT department and serves as a leader within its innovation efforts. This includes the Center for Innovation Technology Hub — which opened in 2020 in the Texas Medical Center location and opened its Ion outpost last week.

Stansbury explains on the Houston Innovators Podcast how effective this distribution of innovation responsibilities has been for Houston Methodist. With everyone having a seat at the table — operations knows the biggest problems that need solutions, IT knows how to deploy technology, etc. — implementation of new innovations has been sped up.

"If we partner together, we should be able to succeed fast or fail fast," she says on the show. "We've been able to find a solution, pilot it, and, if it works well, roll it out at a speed that most other organizations have not been able to do. It's been highly successful for us." Read more.

Barclay Jumet, researcher at Rice University

A team at Rice University is designing wearable technology that can be used for navigation for users with visual and auditory impairments. Photo by Brandon Martin/Rice University

A group of Rice researchers have tapped into the sense of touch to improve how wearable technology can communicate with its user.

Barclay Jumet, a mechanical engineering PhD student at Rice working in the labs of Daniel Preston and Marcia O’Malley, published the findings in the August issue of “Device.” The study outlines the group's new system of haptic accessories that rely heavily on fluidic control over electrical inputs to signal or simulate touch to a wearer.

“In the future, this technology could be directly integrated with navigational systems, so that the very textiles making up one’s clothing can tell users which way to go without taxing their already overloaded visual and auditory senses—for instance by needing to consult a map or listen to a virtual assistant,” Jumet said in a release from Rice. Read more.

Collin McLelland, co-founder and CEO of Digital Wildcatters

This Houston-based media company launched a networking platform to help solve the energy crisis. Photo courtesy

Houston-based media organization Digital Wildcatters has officially launched the beta program of their networking app to help bridge the hiring gap in the energy industry. By providing a platform for individuals to get their questions answered by experts and a space for companies seeking qualified talent, Collide is structured to ignite the next generation of energy innovators.

Collin McLelland, co-founder and CEO of Digital Wildcatters, says he aims to expand their professional community through this networking platform. Rather than being a transition away from Digital Wildcatters’ roots as a digital media organization McLelland explains Collide is an integration of the community they have built through podcasts and events into an interactive platform.

“If you look at what we’ve done historically with Digital Wildcatters, we’ve built an extremely engaged community of energy professionals — it’s a next generation community, very young forward thinking professionals that are working towards solving the world’s energy crisis,” McLelland shares. Read more.

A team at Rice University is designing wearable technology that can be used for navigation for users with visual and auditory impairments. Photo by Brandon Martin/Rice University

Rice team develops complex wearables that can navigate users through Houston

hi, tech

A group of Rice researchers have tapped into the sense of touch to improve how wearable technology can communicate with its user.

Barclay Jumet, a mechanical engineering PhD student at Rice working in the labs of Daniel Preston and Marcia O’Malley, published the findings in the August issue of “Device.” The study outlines the group's new system of haptic accessories that rely heavily on fluidic control over electrical inputs to signal or simulate touch to a wearer. The research was supported by the National Science Foundation, the Rice University Academy of Fellows, and the Gates Millennium Scholars Program.

The accessories include a belt and textile sleeves, which deliver haptic cues like vibration, tapping and squeezing through pressure generated by a lightweight carbon dioxide tank attached to the belt. The sleeve contains up to six quarter-sized pouches that inflate with varying force and frequency, depending on what is being communicated to the wearer.

Marcia O'Malley (from left), Barclay Jumet and Daniel Preston developed a wearable textile device that can deliver complex haptic cues in real time to users on the go. Photo by Brandon Martin/Rice University

The team says the wearables have uses for those with visual and auditory impairments and offer a slimmed-down design compared to other bulky complex haptic wearables. The wearables are also washable and repairable, which gives them more everyday uses.

To test the system's usability, the team guided a user on a mile-long route through Houston, signaling haptic cues for forward, backward, left or right through the devices.

“In the future, this technology could be directly integrated with navigational systems, so that the very textiles making up one’s clothing can tell users which way to go without taxing their already overloaded visual and auditory senses—for instance by needing to consult a map or listen to a virtual assistant,” Jumet said in a release from Rice.

O’Malley, chair of the Department of Mechanical Engineering, said the system could also work in tandem with Cochlear implants and make lip-reading easier for users in noisy environments by directing users to sources of sound.

Jumet also sees uses outside of the medical space.

“Instead of a smart watch with simple vibrational cues, we can now envision a ‘smart shirt’ that gives the sensation of a stroking hand or a soft tap on the torso or arm,” he said in the release. “Movies, games and other forms of entertainment could now incorporate the sense of touch, and virtual reality can be more comfortable for longer periods of time.”


Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Biosciences startup becomes Texas' first decacorn after latest funding

A Dallas-based biosciences startup whose backers include millionaire investors from Austin and Dallas has reached decacorn status — a valuation of at least $10 billion — after hauling in a series C funding round of $200 million, the company announced this month. Colossal Biosciences is reportedly the first Texas startup to rise to the decacorn level.

Colossal, which specializes in genetic engineering technology designed to bring back or protect various species, received the $200 million from TWG Global, an investment conglomerate led by billionaire investors Mark Walter and Thomas Tull. Walter is part owner of Major League Baseball’s Los Angeles Dodgers, and Tull is part owner of the NFL’s Pittsburgh Steelers.

Among the projects Colossal is tackling is the resurrection of three extinct animals — the dodo bird, Tasmanian tiger and woolly mammoth — through the use of DNA and genomics.

The latest round of funding values Colossal at $10.2 billion. Since launching in 2021, the startup has raised $435 million in venture capital.

In addition to Walter and Tull, Colossal’s investors include prominent video game developer Richard Garriott of Austin and private equity veteran Victor Vescov of Dallas. The two millionaires are known for their exploits as undersea explorers and tourist astronauts.

Aside from Colossal’s ties to Dallas and Austin, the startup has a Houston connection.

The company teamed up with Baylor College of Medicine researcher Paul Ling to develop a vaccine for elephant endotheliotropic herpesvirus (EEHV), the deadliest disease among young elephants. In partnership with the Houston Zoo, Ling’s lab at the Baylor College of Medicine has set up a research program that focuses on diagnosing and treating EEHV, and on coming up with a vaccine to protect elephants against the disease. Ling and the BCMe are members of the North American EEHV Advisory Group.

Colossal operates research labs Dallas, Boston and Melbourne, Australia.

“Colossal is the leading company working at the intersection of AI, computational biology, and genetic engineering for both de-extinction and species preservation,” Walter, CEO of TWG Globa, said in a news release. “Colossal has assembled a world-class team that has already driven, in a short period of time, significant technology innovations and impact in advancing conservation, which is a core value of TWG Global.”

Well-known genetics researcher George Church, co-founder of Colossal, calls the startup “a revolutionary genetics company making science fiction into science fact.”

“We are creating the technology to build de-extinction science and scale conservation biology,” he added, “particularly for endangered and at-risk species.”

Houston investment firm names tech exec as new partner

new hire

Houston tech executive Robert Kester has joined Houston-based Veriten, an energy-focused research, investment and strategy firm, as technology and innovation partner.

Kester most recently served as chief technology officer for emissions solutions at Honeywell Process Solutions, where he worked for five years. Honeywell International acquired Houston-based oil and gas technology company Rebellion Photonics, where Kester was co-founder and CEO, in 2019.

Honeywell Process Solutions shares offices in Houston with the global headquarters of Honeywell Performance Materials and Technologies. Honeywell, a Fortune 100 conglomerate, employs more than 850 people in Houston.

“We are thrilled to welcome Robert to the Veriten team,” founder and CEO Maynard Holt said in a statement, “and are confident that his technical expertise and skills will make a big contribution to Veriten’s partner and investor community. He will [oversee] every aspect of what we do, with the use case for AI in energy high on the 2025 priority list.”

Kester earned a doctoral degree in bioengineering from Rice University, a master’s degree in optical sciences from the University of Arizona and a bachelor’s degree in laser optical engineering technology from the Oregon Institute of Technology. He holds 25 patents and has more than 25 patents pending.

Veriten celebrated its third anniversary on January 10, the day that the hiring of Kester was announced. The startup launched with seven employees.

“With the addition of Dr. Kester, we are a 26-person team and are as enthusiastic as ever about improving the energy dialogue and researching the future paths for energy,” Holt added.

Kester spoke on the Houston Innovators Podcast in 2021. Listen here

.