TRISH is sending six research projects onboard Axiom Space's next mission, which is expected to launch in January. Photo via bcm.com

A Houston organization announced that it plans to launch six more experiments into space next year that look to learn more about everything from motion sickness to genome alterations during space travel.

The Translational Research Institute for Space Health, or TRISH, which is part of BCM’s Center for Space Medicine, will team up once more with Houston-based Axiom Space on its third private astronaut mission to the International Space Station, Ax-3, which is expected to launch in January. TRISH also sent experiments on Axiom's Ax-2 mission that launched in May.

The experiments are part of TRISH's Enhancing eXploration Platforms and Analog Definition (EXPAND) program, which aims "to help humans thrive on future space missions," according to a release.

“Our commercial spaceflight partners such as Axiom Space are instrumental to cutting-edge research, including these projects designed to reveal how the human body and mind function in the extreme environment of space,” Dr. Emmanuel Urquieta, TRISH chief medical officer, EXPAND program lead and assistant professor in the Center for Space Medicine at Baylor. “This work represents an important step in our journey to understand the body's response to challenging conditions, which is critical for improving human health both here on Earth and on future long-duration missions, including to the Moon and Mars.”

The six project onboard Ax-3 include:

  • Cognitive and Physiologic Responses in Commercial Space Crew on Short-Duration Missions, Mathias Basner, M.D., Ph.D., M.S., University of Pennsylvania Perelman School of Medicine: Basner’s team will track spaceflight participants’ memory, abstraction, spatial orientation, emotion recognition, risk decision-making and sustained attention before and after space travel
  • Otolith and Posture Evaluation II, Mark Shelhamer, Sc.D., Johns Hopkins University: Shelhamer's team will study how inner ears and eyes sense and respond to motion before and immediately after spaceflight to predict who is likely to develop space motion sickness.
  • Space Omics + BioBank, Richard Gibbs, Ph.D., Baylor College of Medicine: Gibbs’ team will gather biological specimens from astronauts before and after their mission to assess the effects of spaceflight on the human body at the genomic level.
  • SANS Surveillance, TRISH: The institute will study Spaceflight Associated Neuro-Ocular Syndrome by collecting vision function data during the ground phases of the mission.
  • Standardized research questionnaires, TRISH: The institute will gather contextual and qualitative data points for its EXPAND research database related to sleep, personality, health history, team dynamics and immune-related symptoms.
  • Sensorimotor adaptation, TRISH: The institute will collect data on how spaceflight participants' ability to stand, balance and have full body control.

Ax-3 is Axiom's third commercial astronaut mission to the ISS, which the company announced in March. The crew, which includes Commander Michael López-Alegría, Pilot Walter Villadei, and Mission Specialists Alper Gezeravcı and Marcus Wandt, will spend 14 days on the ISS. The mission will launch from NASA’s Kennedy Space Center in Florida aboard a SpaceX Dragon spacecraft.

Axiom also has plans for its fourth private mission, Ax-4, which it announced in August.

In addition to the partnership with Axiom, TRISH also announced late last month that it has made a new agreement with the Australian Antarctic Division's Polar Medicine Unit. The collaboration will nominate pilot projects that focus on challenges associated with extreme isolation, which have applications in long-duration space travel to the Moon and Mars.

“Our international collaboration with the AAD will extract insights to benefit all future astronauts, as well as other explorers of extreme environments,” said Dr. Dorit Donoviel, associate professor in the Center for Space Medicine at Baylor and TRISH executive director. “This agreement marks the beginning of yet another exciting venture into space health research for TRISH, and we look forward to collaborating with the AAD to advance our shared goal of promoting safe human exploration.”

In March, TRISH also announced an international agreement with the Korea National Institute of Health. The two organizations plan to collaborate on research related to mental health issues due to space travel, the challenges of food supply in deep space, the negative effects of space radiation and en-suite medical care for long-duration space travel.

TRISH is also slated to launch nine experiments on board SpaceX's Polaris Dawn mission, which is now expected to launch no earlier than 2024. The research aboard Polaris Dawn is intended to complement research supported by TRISH on the Inspiration4 all-civilian mission to orbit.
Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice University researchers unveil new model that could sharpen MRI scans

MRI innovation

Researchers at Rice University, in collaboration with Oak Ridge National Laboratory, have developed a new model that could lead to sharper imaging and safer diagnostics using magnetic resonance imaging, or MRI.

In a study recently published in The Journal of Chemical Physics, the team of researchers showed how they used the Fokker-Planck equation to better understand how water molecules respond to contrast agents in a process known as “relaxation.” Previous models only approximated how water molecules relaxed around contrasting agents. However, through this new model, known as the NMR eigenmodes framework, the research team has uncovered the “full physical equations” to explain the process.

“The concept is similar to how a musical chord consists of many notes,” Thiago Pinheiro, the study’s first author, a Rice doctoral graduate in chemical and biomolecular engineering and postdoctoral researcher in the chemical sciences division at Oak Ridge National Laboratory, said in a news release. “Previous models only captured one or two notes, while ours picks up the full harmony.”

According to Rice, the findings could lead to the development and application of new contrast agents for clearer MRIs in medicine and materials science. Beyond MRIs, the NMR relaxation method could also be applied to other areas like battery design and subsurface fluid flow.

“In the present paper, we developed a comprehensive theory to interpret those previous molecular dynamics simulations and experimental findings,” Dilipkumar Asthagiri, a senior computational biomedical scientist in the National Center for Computational Sciences at Oak Ridge National Laboratory, said in the release. ”The theory, however, is general and can be used to understand NMR relaxation in liquids broadly.”

The team has also made its code available as open source to encourage its adoption and further development by the broader scientific community.

“By better modeling the physics of nuclear magnetic resonance relaxation in liquids, we gain a tool that doesn’t just predict but also explains the phenomenon,” Walter Chapman, a professor of chemical and biomolecular engineering at Rice, added in the release. “That is crucial when lives and technologies depend on accurate scientific understanding.”

The study was backed by The Ken Kennedy Institute, Rice Creative Ventures Fund, Robert A. Welch Foundation and Oak Ridge Leadership Computing Facility at Oak Ridge National Laboratory.

Luxury transportation startup connects Houston with Austin and San Antonio

On The Road Again

Houston business and leisure travelers have a luxe new way to hop between Texas cities. Transportation startup Shutto has launched luxury van service connecting San Antonio, Austin, and Houston, offering travelers a comfortable alternative to flying or long-haul rideshare.

Bookings are now available Monday through Saturday with departure times in the morning and evening. One-way fares range from $47-$87, putting Shutto in a similar lane to Dallas-based Vonlane, which also offers routes from Houston to Austin and San Antonio.

Shutto enters the market at a time when highway congestion is a hotter topic than ever. With high-speed rail still years in the future, its model aims to provide fast, predictable service at commuter prices.

The startup touts an on-time departure guarantee and a relaxed, intimate ride. Only 12 passengers fit inside each Mercedes Sprinter van, equipped with Wi-Fi and leather seating. And each route includes a pit stop at roadside favorite Buc-ee's.

In announcing the launch, founder and CEO Alberto Salcedo called the company a new category in Texas mobility.

“We are bringing true disruptive mobility to Texas: faster and more convenient than flying (no security lines, no delays), more comfortable and exclusive than the bus or train, and up to 70 percent cheaper than private transfers or Uber Black,” Salcedo said in a release.

“Whether you’re commuting for business, visiting family, exploring Texas wineries, or doing a taco tour in San Antonio, Shutto makes traveling between these cities as easy and affordable as riding inside the city."

Beyond the scheduled routes, Shutto offers private, customizable trips anywhere in the country, a service it expects will appeal to corporate retreat planners, party planners, and tourists alike.

In Houston, the service picks up and drops off near the Galleria at the Foam Coffee & Kitchen parking lot, 5819 Richmond Ave.. In San Antonio, it is located at La Panadería Bakery’s parking lot at 8305 Broadway. In Austin, the location is the Pershing East Café parking lot at 2501 E. Fifth St.

---

This article originally appeared on CultureMap.com.

Houston-area lab grows with focus on mobile diagnostics and predictive medicine

mobile medicine

When it comes to healthcare, access can be a matter of life and death. And for patients in skilled nursing facilities, assisted living or even their own homes, the ability to get timely diagnostic testing is not just a convenience, it’s a necessity.

That’s the problem Principle Health Systems (PHS) set out to solve.

Founded in 2016 in Clear Lake, Texas, PHS began as a conventional laboratory but quickly pivoted to mobile diagnostics, offering everything from core blood work and genetic testing to advanced imaging like ultrasounds, echocardiograms, and X-rays.

“We were approached by a group in a local skilled nursing facility to provide services, and we determined pretty quickly there was a massive need in this area,” says James Dieter, founder, chairman and CEO of PHS. “Turnaround time is imperative. These facilities have an incredibly sick population, and of course, they lack mobility to get the care that they need.”

What makes PHS unique is not only what they do, but where they do it. While they operate one of the largest labs serving skilled nursing facilities in the state, their mobile teams go wherever patients are, whether that’s a nursing home, a private residence or even a correctional facility.

Diagnostics, Dieter says, are at the heart of medical decision-making.

“Seventy to 80 percent of all medical decisions are made from diagnostic results in lab and imaging,” he says. “The diagnostic drives the doctor’s or the provider’s next move. When we recognized a massive slowdown in lab results, we had to innovate to do it faster.”

Innovation at PHS isn’t just about speed; it’s about accessibility and precision.

Chris Light, COO, explains: “For stat testing, we use bedside point-of-care instruments. Our phlebotomists take those into the facilities, test at the bedside, and get results within minutes, rather than waiting days for results to come back from a core lab.”

Scaling a mobile operation across multiple states isn’t simple, but PHS has expanded into nine states, including Texas, Oklahoma, Kansas, Missouri and Arizona. Their model relies on licensed mobile phlebotomists, X-ray technologists and sonographers, all trained to provide high-level care outside traditional hospital settings.

The financial impact for patients is significant. Instead of ambulance rides and ER visits costing thousands, PHS services often cost just a fraction, sometimes only tens or hundreds of dollars.

“Traditionally, without mobile diagnostics, the patient would be loaded into a transportation vehicle, typically an ambulance, and taken to a hospital,” Dieter says. “Our approach is a fraction of the cost but brings care directly to the patients.”

The company has also embraced predictive and personalized medicine, offering genetic tests that guide medication decisions and laboratory tests that predict cognitive decline from conditions like Alzheimer's and Parkinson’s.

“We actively look for complementary services to improve patient outcomes,” Dieter says. “Precision medicine and predictive testing have been a great value-add for our providers.”

Looking to the future, PHS sees mobile healthcare as part of a larger trend toward home-based care.

“There’s an aging population that still lives at home with caretakers,” Dieter explains. “We go into the home every day, whether it’s an apartment, a standalone home, or assisted living. The goal is to meet patients where they are and reduce the need for hospitalization.”

Light highlighted another layer of innovation: predictive guidance.

“We host a lot of data, and labs and imaging drive most treatment decisions,” Light says. “We’re exploring how to deploy diagnostics immediately based on results, eliminating hours of delay and keeping patients healthier longer.”

Ultimately, innovation at PHS isn’t just about technology; it’s about equity.

“There’s an 11-year life expectancy gap between major metro areas and rural Texas,” Dieter says. “Our innovation has been leveling the field, so everyone has access to high-quality diagnostics and care, regardless of where they live.”