A Houston entrepreneur and investor is bullish on bringing flying motorcycles to existence. Courtesy of Aviator Cycles

When it comes to flying cars, Jeff Chimenti wants to give Elon Musk a run for his money — even though Musk, famously, has a lot of that.

But Chimenti is confident that his startup, Aviator Cycles, might be one of the first to get a vehicle off the ground and up into consumer markets. That's because he's not focusing on cars at all — the prototype, unveiled at a recent promotional event in the Woodlands, is a critical propulsion system for what Chimenti calls a personal air vehicle, or PAV.

The PAVs that Aviator Cycles plans to make are more like motorcycles or four-wheelers and intended for recreational use — but the high-tech system could change how other designers make flying vehicles.

"All of this is really happening," says Chimenti, a Houston-based investor and chief visionary officer and co-founder for the startup. "We're pushing it forward."

And, hopefully, upward. Aviator Cycles's first PAV doesn't fly yet, but smaller models have, and Chimenti expects to see a successful launch within one year. The company is making PAVs because there's a lot of red tape around making cars — traffic systems will need to be redrafted.

So for now, the unique propulsion system, which has come a long way since co-founder Jesse Marcel made his first patent on it before the company was even made, is being fastened to the Aerorunner GSX, a sports vehicle that will flutter from about four feet off the ground for safety.

Aviator Cycles plans to start taking reservations for these in the next six months. But Marcel says that his proprietary propulsion system will eventually make its way to other companies and vehicles; Audi, Porsche and Boeing, for example, have announced flying car projects in recent years.

All this innovation is part of a push toward alternative transportation, but it feels like a resurgent space race — just a little lower this time. Aviator Cycles, based in Spokane, Washington, isn't the only manufacturer. In 2018, California-based Hoversurf announced a hoverbike with a set of helicopter blades. It was supposed to ship out earlier this year for $150,000. Across the world — in Britain and Israel, for example — companies are developing bikes to compete in a brand-new flying vehicle market.

"Everybody that designs is great, but they're ultimately going to have to use our propulsion system," says Chimenti.

A new kind of 4x4 might fly, literally, in the Pacific Northwest, where the culture is all hiking and being outside. Texans, though, tend to have a better relationship with their air-conditioners than the great outdoors. Houston, especially, is mostly the urban sprawl of twisting highways — the same unregulatable stretch of concrete that Chimenti has avoided making vehicles for.

But Chimenti is optimistic about the potential for Space City. Last October, the Houston City Council gave $18.8 million to develop the Houston Spaceport, a kind of "mission control" for the future of commercial alternative transportation. Near Ellington Airport, the site has launch pads and lab space — but, maybe most excitingly for people like Chimenti, it has a tech incubator for developers to design and test their equipment.

Houston, then, has a historical stake in how we explore the space above our heads — and what's left for the regular person to explore is closer, below the stratosphere. If Houston has already been instrumental in getting all the way up there, then some light hovering will be nothing. When it comes to flying motocross, Chimenti says, Houston won't have a problem.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Axiom Space-tested cancer drug advances to clinical trials

mission critical

A cancer-fighting drug tested aboard several Axiom Space missions is moving forward to clinical trials.

Rebecsinib, which targets a cancer cloning and immune evasion gene, ADAR1, has received FDA approval to enter clinical trials under active Investigational New Drug (IND) status, according to a news release. The drug was tested aboard Axiom Mission 2 (Ax-2) and Axiom Mission 3 (Ax-3). It was developed by Aspera Biomedicine, led by Dr. Catriona Jamieson, director of the UC San Diego Sanford Stem Cell Institute (SSCI).

The San Diego-based Aspera team and Houston-based Axiom partnered to allow Rebecsinib to be tested in microgravity. Tumors have been shown to grow more rapidly in microgravity and even mimic how aggressive cancers can develop in patients.

“In terms of tumor growth, we see a doubling in growth of these little mini-tumors in just 10 days,” Jamieson explained in the release.

Rebecsinib took part in the patient-derived tumor organoid testing aboard the International Space Station. Similar testing is planned to continue on Axiom Station, the company's commercial space station that's currently under development.

Additionally, the drug will be tested aboard Ax-4 under its active IND status, which was targeted to launch June 25.

“We anticipate that this monumental mission will inform the expanded development of the first ADAR1 inhibitory cancer stem cell targeting drug for a broad array of cancers," Jamieson added.

According to Axiom, the milestone represents the potential for commercial space collaborations.

“We’re proud to work with Aspera Biomedicines and the UC San Diego Sanford Stem Cell Institute, as together we have achieved a historic milestone, and we’re even more excited for what’s to come,” Tejpaul Bhatia, the new CEO of Axiom Space, said in the release. “This is how we crack the code of the space economy – uniting public and private partners to turn microgravity into a launchpad for breakthroughs.”

Chevron enters the lithium market with major Texas land acquisition

to market

Chevron U.S.A., a subsidiary of Houston-based energy company Chevron, has taken its first big step toward establishing a commercial-scale lithium business.

Chevron acquired leaseholds totaling about 125,000 acres in Northeast Texas and southwest Arkansas from TerraVolta Resources and East Texas Natural Resources. The acreage contains a high amount of lithium, which Chevron plans to extract from brines produced from the subsurface.

Lithium-ion batteries are used in an array of technologies, such as smartwatches, e-bikes, pacemakers, and batteries for electric vehicles, according to Chevron. The International Energy Agency estimates lithium demand could grow more than 400 percent by 2040.

“This acquisition represents a strategic investment to support energy manufacturing and expand U.S.-based critical mineral supplies,” Jeff Gustavson, president of Chevron New Energies, said in a news release. “Establishing domestic and resilient lithium supply chains is essential not only to maintaining U.S. energy leadership but also to meeting the growing demand from customers.”

Rania Yacoub, corporate business development manager at Chevron New Energies, said that amid heightening demand, lithium is “one of the world’s most sought-after natural resources.”

“Chevron is looking to help meet that demand and drive U.S. energy competitiveness by sourcing lithium domestically,” Yacoub said.

---

This article originally appeared on EnergyCapital.